Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension

Yijun Dong, Yicheng Li, Yunai Li, Jason D. Lee, Qi Lei
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:14079-14113, 2025.

Abstract

Weak-to-strong (W2S) generalization is a type of finetuning (FT) where a strong (large) student model is trained on pseudo-labels generated by a weak teacher. Surprisingly, W2S FT often outperforms the weak teacher. We seek to understand this phenomenon through the observation that FT often occurs in intrinsically low-dimensional spaces. Leveraging the low intrinsic dimensionality of FT, we analyze W2S in the ridgeless regression setting from a variance reduction perspective. For a strong student-weak teacher pair with sufficiently expressive low-dimensional feature subspaces $\mathcal{V}_s, \mathcal{V}_w$, we provide an exact characterization of the variance that dominates the generalization error of W2S. This unveils a virtue of discrepancy between the strong and weak models in W2S: the variance of the weak teacher is inherited by the strong student in $\mathcal{V}_s \cap \mathcal{V}_w$, while reduced by a factor of $\mathrm{dim}(\mathcal{V}_s)/N$ in the subspace of discrepancy $\mathcal{V}_w \setminus \mathcal{V}_s$ with $N$ pseudo-labels for W2S. Our analysis further casts light on the sample complexities and the scaling of performance gap recovery in W2S. The analysis is supported by experiments on synthetic regression problems, as well as real vision and NLP tasks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-dong25g, title = {Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension}, author = {Dong, Yijun and Li, Yicheng and Li, Yunai and Lee, Jason D. and Lei, Qi}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {14079--14113}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/dong25g/dong25g.pdf}, url = {https://proceedings.mlr.press/v267/dong25g.html}, abstract = {Weak-to-strong (W2S) generalization is a type of finetuning (FT) where a strong (large) student model is trained on pseudo-labels generated by a weak teacher. Surprisingly, W2S FT often outperforms the weak teacher. We seek to understand this phenomenon through the observation that FT often occurs in intrinsically low-dimensional spaces. Leveraging the low intrinsic dimensionality of FT, we analyze W2S in the ridgeless regression setting from a variance reduction perspective. For a strong student-weak teacher pair with sufficiently expressive low-dimensional feature subspaces $\mathcal{V}_s, \mathcal{V}_w$, we provide an exact characterization of the variance that dominates the generalization error of W2S. This unveils a virtue of discrepancy between the strong and weak models in W2S: the variance of the weak teacher is inherited by the strong student in $\mathcal{V}_s \cap \mathcal{V}_w$, while reduced by a factor of $\mathrm{dim}(\mathcal{V}_s)/N$ in the subspace of discrepancy $\mathcal{V}_w \setminus \mathcal{V}_s$ with $N$ pseudo-labels for W2S. Our analysis further casts light on the sample complexities and the scaling of performance gap recovery in W2S. The analysis is supported by experiments on synthetic regression problems, as well as real vision and NLP tasks.} }
Endnote
%0 Conference Paper %T Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension %A Yijun Dong %A Yicheng Li %A Yunai Li %A Jason D. Lee %A Qi Lei %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-dong25g %I PMLR %P 14079--14113 %U https://proceedings.mlr.press/v267/dong25g.html %V 267 %X Weak-to-strong (W2S) generalization is a type of finetuning (FT) where a strong (large) student model is trained on pseudo-labels generated by a weak teacher. Surprisingly, W2S FT often outperforms the weak teacher. We seek to understand this phenomenon through the observation that FT often occurs in intrinsically low-dimensional spaces. Leveraging the low intrinsic dimensionality of FT, we analyze W2S in the ridgeless regression setting from a variance reduction perspective. For a strong student-weak teacher pair with sufficiently expressive low-dimensional feature subspaces $\mathcal{V}_s, \mathcal{V}_w$, we provide an exact characterization of the variance that dominates the generalization error of W2S. This unveils a virtue of discrepancy between the strong and weak models in W2S: the variance of the weak teacher is inherited by the strong student in $\mathcal{V}_s \cap \mathcal{V}_w$, while reduced by a factor of $\mathrm{dim}(\mathcal{V}_s)/N$ in the subspace of discrepancy $\mathcal{V}_w \setminus \mathcal{V}_s$ with $N$ pseudo-labels for W2S. Our analysis further casts light on the sample complexities and the scaling of performance gap recovery in W2S. The analysis is supported by experiments on synthetic regression problems, as well as real vision and NLP tasks.
APA
Dong, Y., Li, Y., Li, Y., Lee, J.D. & Lei, Q.. (2025). Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:14079-14113 Available from https://proceedings.mlr.press/v267/dong25g.html.

Related Material