Adaptive Multi-prompt Contrastive Network for Few-shot Out-of-distribution Detection

Xiang Fang, Arvind Easwaran, Blaise Genest
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:15887-15900, 2025.

Abstract

Out-of-distribution (OOD) detection attempts to distinguish outlier samples to prevent models trained on the in-distribution (ID) dataset from producing unavailable outputs. Most OOD detection methods require many ID samples for training, which seriously limits their real-world applications. To this end, we target a challenging setting: few-shot OOD detection, where only a few labeled ID samples are available. Therefore, few-shot OOD detection is much more challenging than the traditional OOD detection setting. Previous few-shot OOD detection works ignore the distinct diversity between different classes. In this paper, we propose a novel network: Adaptive Multi-prompt Contrastive Network (AMCN), which adapts the ID-OOD separation boundary by learning inter- and intra-class distribution. To compensate for the absence of OOD and scarcity of ID image samples, we leverage CLIP, connecting text with images, engineering learnable ID and OOD textual prompts. Specifically, we first generate adaptive prompts (learnable ID prompts, label-fixed OOD prompts, and label-adaptive OOD prompts). Then, we generate an adaptive class boundary for each class by introducing a class-wise threshold. Finally, we propose a prompt-guided ID-OOD separation module to control the margin between ID and OOD prompts. Experimental results show that AMCN outperforms other state-of-the-art works.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-fang25a, title = {Adaptive Multi-prompt Contrastive Network for Few-shot Out-of-distribution Detection}, author = {Fang, Xiang and Easwaran, Arvind and Genest, Blaise}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {15887--15900}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/fang25a/fang25a.pdf}, url = {https://proceedings.mlr.press/v267/fang25a.html}, abstract = {Out-of-distribution (OOD) detection attempts to distinguish outlier samples to prevent models trained on the in-distribution (ID) dataset from producing unavailable outputs. Most OOD detection methods require many ID samples for training, which seriously limits their real-world applications. To this end, we target a challenging setting: few-shot OOD detection, where only a few labeled ID samples are available. Therefore, few-shot OOD detection is much more challenging than the traditional OOD detection setting. Previous few-shot OOD detection works ignore the distinct diversity between different classes. In this paper, we propose a novel network: Adaptive Multi-prompt Contrastive Network (AMCN), which adapts the ID-OOD separation boundary by learning inter- and intra-class distribution. To compensate for the absence of OOD and scarcity of ID image samples, we leverage CLIP, connecting text with images, engineering learnable ID and OOD textual prompts. Specifically, we first generate adaptive prompts (learnable ID prompts, label-fixed OOD prompts, and label-adaptive OOD prompts). Then, we generate an adaptive class boundary for each class by introducing a class-wise threshold. Finally, we propose a prompt-guided ID-OOD separation module to control the margin between ID and OOD prompts. Experimental results show that AMCN outperforms other state-of-the-art works.} }
Endnote
%0 Conference Paper %T Adaptive Multi-prompt Contrastive Network for Few-shot Out-of-distribution Detection %A Xiang Fang %A Arvind Easwaran %A Blaise Genest %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-fang25a %I PMLR %P 15887--15900 %U https://proceedings.mlr.press/v267/fang25a.html %V 267 %X Out-of-distribution (OOD) detection attempts to distinguish outlier samples to prevent models trained on the in-distribution (ID) dataset from producing unavailable outputs. Most OOD detection methods require many ID samples for training, which seriously limits their real-world applications. To this end, we target a challenging setting: few-shot OOD detection, where only a few labeled ID samples are available. Therefore, few-shot OOD detection is much more challenging than the traditional OOD detection setting. Previous few-shot OOD detection works ignore the distinct diversity between different classes. In this paper, we propose a novel network: Adaptive Multi-prompt Contrastive Network (AMCN), which adapts the ID-OOD separation boundary by learning inter- and intra-class distribution. To compensate for the absence of OOD and scarcity of ID image samples, we leverage CLIP, connecting text with images, engineering learnable ID and OOD textual prompts. Specifically, we first generate adaptive prompts (learnable ID prompts, label-fixed OOD prompts, and label-adaptive OOD prompts). Then, we generate an adaptive class boundary for each class by introducing a class-wise threshold. Finally, we propose a prompt-guided ID-OOD separation module to control the margin between ID and OOD prompts. Experimental results show that AMCN outperforms other state-of-the-art works.
APA
Fang, X., Easwaran, A. & Genest, B.. (2025). Adaptive Multi-prompt Contrastive Network for Few-shot Out-of-distribution Detection. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:15887-15900 Available from https://proceedings.mlr.press/v267/fang25a.html.

Related Material