Reliable Algorithm Selection for Machine Learning-Guided Design

Clara Fannjiang, Ji Won Park
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:16078-16101, 2025.

Abstract

Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task—for example, to design novel proteins with high binding affinity to a therapeutic target—one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion—for example, that at least ten percent of designs’ labels exceed a threshold. It does so by combining designs’ predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference (Angelopoulos et al., 2023). The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method’s effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-fannjiang25a, title = {Reliable Algorithm Selection for Machine Learning-Guided Design}, author = {Fannjiang, Clara and Park, Ji Won}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {16078--16101}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/fannjiang25a/fannjiang25a.pdf}, url = {https://proceedings.mlr.press/v267/fannjiang25a.html}, abstract = {Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task—for example, to design novel proteins with high binding affinity to a therapeutic target—one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion—for example, that at least ten percent of designs’ labels exceed a threshold. It does so by combining designs’ predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference (Angelopoulos et al., 2023). The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method’s effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.} }
Endnote
%0 Conference Paper %T Reliable Algorithm Selection for Machine Learning-Guided Design %A Clara Fannjiang %A Ji Won Park %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-fannjiang25a %I PMLR %P 16078--16101 %U https://proceedings.mlr.press/v267/fannjiang25a.html %V 267 %X Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task—for example, to design novel proteins with high binding affinity to a therapeutic target—one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion—for example, that at least ten percent of designs’ labels exceed a threshold. It does so by combining designs’ predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference (Angelopoulos et al., 2023). The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method’s effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.
APA
Fannjiang, C. & Park, J.W.. (2025). Reliable Algorithm Selection for Machine Learning-Guided Design. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:16078-16101 Available from https://proceedings.mlr.press/v267/fannjiang25a.html.

Related Material