BiMark: Unbiased Multilayer Watermarking for Large Language Models

Xiaoyan Feng, He Zhang, Yanjun Zhang, Leo Yu Zhang, Shirui Pan
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:17049-17067, 2025.

Abstract

Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation. To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity. To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations: (1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-feng25u, title = {{B}i{M}ark: Unbiased Multilayer Watermarking for Large Language Models}, author = {Feng, Xiaoyan and Zhang, He and Zhang, Yanjun and Zhang, Leo Yu and Pan, Shirui}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {17049--17067}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/feng25u/feng25u.pdf}, url = {https://proceedings.mlr.press/v267/feng25u.html}, abstract = {Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation. To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity. To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations: (1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.} }
Endnote
%0 Conference Paper %T BiMark: Unbiased Multilayer Watermarking for Large Language Models %A Xiaoyan Feng %A He Zhang %A Yanjun Zhang %A Leo Yu Zhang %A Shirui Pan %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-feng25u %I PMLR %P 17049--17067 %U https://proceedings.mlr.press/v267/feng25u.html %V 267 %X Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation. To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity. To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations: (1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.
APA
Feng, X., Zhang, H., Zhang, Y., Zhang, L.Y. & Pan, S.. (2025). BiMark: Unbiased Multilayer Watermarking for Large Language Models. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:17049-17067 Available from https://proceedings.mlr.press/v267/feng25u.html.

Related Material