Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing

Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, Jun Xiao, Long Chen
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:18550-18565, 2025.

Abstract

With the advance of diffusion models, today’s video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available: https://github.com/Dawn-LX/CausalCache-VDM

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-gao25m, title = {Ca2-{VDM}: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing}, author = {Gao, Kaifeng and Shi, Jiaxin and Zhang, Hanwang and Wang, Chunping and Xiao, Jun and Chen, Long}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {18550--18565}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/gao25m/gao25m.pdf}, url = {https://proceedings.mlr.press/v267/gao25m.html}, abstract = {With the advance of diffusion models, today’s video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available: https://github.com/Dawn-LX/CausalCache-VDM} }
Endnote
%0 Conference Paper %T Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing %A Kaifeng Gao %A Jiaxin Shi %A Hanwang Zhang %A Chunping Wang %A Jun Xiao %A Long Chen %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-gao25m %I PMLR %P 18550--18565 %U https://proceedings.mlr.press/v267/gao25m.html %V 267 %X With the advance of diffusion models, today’s video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available: https://github.com/Dawn-LX/CausalCache-VDM
APA
Gao, K., Shi, J., Zhang, H., Wang, C., Xiao, J. & Chen, L.. (2025). Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:18550-18565 Available from https://proceedings.mlr.press/v267/gao25m.html.

Related Material