Online Learning in Risk Sensitive constrained MDP

Arnob Ghosh, Mehrdad Moharrami
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:19406-19425, 2025.

Abstract

We consider a setting in which the agent aims to maximize the expected cumulative reward, subject to a constraint that the entropic risk of the total utility exceeds a given threshold. Unlike the risk-neutral case, standard primal-dual approaches fail to directly yield regret and violation bounds, as value iteration with respect to a combined state-action value function is not applicable in the risk-sensitive setting. To address this, we adopt the Optimized Certainty Equivalent (OCE) representation of the entropic risk measure and reformulate the problem by augmenting the state space with a continuous budget variable. We then propose a primal-dual algorithm tailored to this augmented formulation. In contrast to the standard approach for risk-neutral CMDPs, our method incorporates a truncated dual update to account for the possible absence of strong duality. We show that the proposed algorithm achieves regret of $\tilde{\mathcal{O}}\big(V_{g,\max}K^{3/4} + \sqrt{H^4 S^2 A \log(1/\delta)}K^{3/4}\big)$ and constraint violation of $\tilde{\mathcal{O}}\big(V_{g,\max} \sqrt{ {H^3 S^2 A \log(1/\delta)}}K^{3/4} \big)$ with probability at least $1-\delta$, where $S$ and $A$ denote the cardinalities of the state and action spaces, respectively, $H$ is the episode length, $K$ is the number of episodes, $\alpha < 0$ is the risk-aversion parameter, and $V_{g,\max} = \frac{1}{|\alpha|}(\exp(|\alpha|H) - 1)$. To the best of our knowledge, this is the first result establishing sublinear regret and violation bounds for the risk-sensitive CMDP problem.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-ghosh25c, title = {Online Learning in Risk Sensitive constrained {MDP}}, author = {Ghosh, Arnob and Moharrami, Mehrdad}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {19406--19425}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/ghosh25c/ghosh25c.pdf}, url = {https://proceedings.mlr.press/v267/ghosh25c.html}, abstract = {We consider a setting in which the agent aims to maximize the expected cumulative reward, subject to a constraint that the entropic risk of the total utility exceeds a given threshold. Unlike the risk-neutral case, standard primal-dual approaches fail to directly yield regret and violation bounds, as value iteration with respect to a combined state-action value function is not applicable in the risk-sensitive setting. To address this, we adopt the Optimized Certainty Equivalent (OCE) representation of the entropic risk measure and reformulate the problem by augmenting the state space with a continuous budget variable. We then propose a primal-dual algorithm tailored to this augmented formulation. In contrast to the standard approach for risk-neutral CMDPs, our method incorporates a truncated dual update to account for the possible absence of strong duality. We show that the proposed algorithm achieves regret of $\tilde{\mathcal{O}}\big(V_{g,\max}K^{3/4} + \sqrt{H^4 S^2 A \log(1/\delta)}K^{3/4}\big)$ and constraint violation of $\tilde{\mathcal{O}}\big(V_{g,\max} \sqrt{ {H^3 S^2 A \log(1/\delta)}}K^{3/4} \big)$ with probability at least $1-\delta$, where $S$ and $A$ denote the cardinalities of the state and action spaces, respectively, $H$ is the episode length, $K$ is the number of episodes, $\alpha < 0$ is the risk-aversion parameter, and $V_{g,\max} = \frac{1}{|\alpha|}(\exp(|\alpha|H) - 1)$. To the best of our knowledge, this is the first result establishing sublinear regret and violation bounds for the risk-sensitive CMDP problem.} }
Endnote
%0 Conference Paper %T Online Learning in Risk Sensitive constrained MDP %A Arnob Ghosh %A Mehrdad Moharrami %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-ghosh25c %I PMLR %P 19406--19425 %U https://proceedings.mlr.press/v267/ghosh25c.html %V 267 %X We consider a setting in which the agent aims to maximize the expected cumulative reward, subject to a constraint that the entropic risk of the total utility exceeds a given threshold. Unlike the risk-neutral case, standard primal-dual approaches fail to directly yield regret and violation bounds, as value iteration with respect to a combined state-action value function is not applicable in the risk-sensitive setting. To address this, we adopt the Optimized Certainty Equivalent (OCE) representation of the entropic risk measure and reformulate the problem by augmenting the state space with a continuous budget variable. We then propose a primal-dual algorithm tailored to this augmented formulation. In contrast to the standard approach for risk-neutral CMDPs, our method incorporates a truncated dual update to account for the possible absence of strong duality. We show that the proposed algorithm achieves regret of $\tilde{\mathcal{O}}\big(V_{g,\max}K^{3/4} + \sqrt{H^4 S^2 A \log(1/\delta)}K^{3/4}\big)$ and constraint violation of $\tilde{\mathcal{O}}\big(V_{g,\max} \sqrt{ {H^3 S^2 A \log(1/\delta)}}K^{3/4} \big)$ with probability at least $1-\delta$, where $S$ and $A$ denote the cardinalities of the state and action spaces, respectively, $H$ is the episode length, $K$ is the number of episodes, $\alpha < 0$ is the risk-aversion parameter, and $V_{g,\max} = \frac{1}{|\alpha|}(\exp(|\alpha|H) - 1)$. To the best of our knowledge, this is the first result establishing sublinear regret and violation bounds for the risk-sensitive CMDP problem.
APA
Ghosh, A. & Moharrami, M.. (2025). Online Learning in Risk Sensitive constrained MDP. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:19406-19425 Available from https://proceedings.mlr.press/v267/ghosh25c.html.

Related Material