Improved and Oracle-Efficient Online $\ell_1$-Multicalibration

Rohan Ghuge, Vidya Muthukumar, Sahil Singla
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:19437-19457, 2025.

Abstract

We study online multicalibration, a framework for ensuring calibrated predictions across multiple groups in adversarial settings, across $T$ rounds. Although online calibration is typically studied in the $\ell_1$ norm, prior approaches to online multicalibration have taken the indirect approach of obtaining rates in other norms (such as $\ell_2$ and $\ell_{\infty}$) and then transferred these guarantees to $\ell_1$ at additional loss. In contrast, we propose a direct method that achieves improved and oracle-efficient rates of $\widetilde{\mathcal{O}}(T^{-1/3})$ and $\widetilde{\mathcal{O}}(T^{-1/4})$ respectively, for online $\ell_1$-multicalibration. Our key insight is a novel reduction of online $\ell_1$-multicalibration to an online learning problem with product-based rewards, which we refer to as online linear-product optimization ($\mathtt{OLPO}$). To obtain the improved rate of $\widetilde{\mathcal{O}}(T^{-1/3})$, we introduce a linearization of $\mathtt{OLPO}$ and design a no-regret algorithm for this linearized problem. Although this method guarantees the desired sublinear rate (nearly matching the best rate for online calibration), it is computationally expensive when the group family $\mathcal{H}$ is large or infinite, since it enumerates all possible groups. To address scalability, we propose a second approach to $\mathtt{OLPO}$ that makes only a polynomial number of calls to an offline optimization (multicalibration evaluation) oracle, resulting in oracle-efficient online $\ell_1$-multicalibration with a corresponding rate of $\widetilde{\mathcal{O}}(T^{-1/4})$. Our framework also extends to certain infinite families of groups (e.g., all linear functions on the context space) by exploiting a $1$-Lipschitz property of the $\ell_1$-multicalibration error with respect to $\mathcal{H}$.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-ghuge25a, title = {Improved and Oracle-Efficient Online $\ell_1$-Multicalibration}, author = {Ghuge, Rohan and Muthukumar, Vidya and Singla, Sahil}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {19437--19457}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/ghuge25a/ghuge25a.pdf}, url = {https://proceedings.mlr.press/v267/ghuge25a.html}, abstract = {We study online multicalibration, a framework for ensuring calibrated predictions across multiple groups in adversarial settings, across $T$ rounds. Although online calibration is typically studied in the $\ell_1$ norm, prior approaches to online multicalibration have taken the indirect approach of obtaining rates in other norms (such as $\ell_2$ and $\ell_{\infty}$) and then transferred these guarantees to $\ell_1$ at additional loss. In contrast, we propose a direct method that achieves improved and oracle-efficient rates of $\widetilde{\mathcal{O}}(T^{-1/3})$ and $\widetilde{\mathcal{O}}(T^{-1/4})$ respectively, for online $\ell_1$-multicalibration. Our key insight is a novel reduction of online $\ell_1$-multicalibration to an online learning problem with product-based rewards, which we refer to as online linear-product optimization ($\mathtt{OLPO}$). To obtain the improved rate of $\widetilde{\mathcal{O}}(T^{-1/3})$, we introduce a linearization of $\mathtt{OLPO}$ and design a no-regret algorithm for this linearized problem. Although this method guarantees the desired sublinear rate (nearly matching the best rate for online calibration), it is computationally expensive when the group family $\mathcal{H}$ is large or infinite, since it enumerates all possible groups. To address scalability, we propose a second approach to $\mathtt{OLPO}$ that makes only a polynomial number of calls to an offline optimization (multicalibration evaluation) oracle, resulting in oracle-efficient online $\ell_1$-multicalibration with a corresponding rate of $\widetilde{\mathcal{O}}(T^{-1/4})$. Our framework also extends to certain infinite families of groups (e.g., all linear functions on the context space) by exploiting a $1$-Lipschitz property of the $\ell_1$-multicalibration error with respect to $\mathcal{H}$.} }
Endnote
%0 Conference Paper %T Improved and Oracle-Efficient Online $\ell_1$-Multicalibration %A Rohan Ghuge %A Vidya Muthukumar %A Sahil Singla %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-ghuge25a %I PMLR %P 19437--19457 %U https://proceedings.mlr.press/v267/ghuge25a.html %V 267 %X We study online multicalibration, a framework for ensuring calibrated predictions across multiple groups in adversarial settings, across $T$ rounds. Although online calibration is typically studied in the $\ell_1$ norm, prior approaches to online multicalibration have taken the indirect approach of obtaining rates in other norms (such as $\ell_2$ and $\ell_{\infty}$) and then transferred these guarantees to $\ell_1$ at additional loss. In contrast, we propose a direct method that achieves improved and oracle-efficient rates of $\widetilde{\mathcal{O}}(T^{-1/3})$ and $\widetilde{\mathcal{O}}(T^{-1/4})$ respectively, for online $\ell_1$-multicalibration. Our key insight is a novel reduction of online $\ell_1$-multicalibration to an online learning problem with product-based rewards, which we refer to as online linear-product optimization ($\mathtt{OLPO}$). To obtain the improved rate of $\widetilde{\mathcal{O}}(T^{-1/3})$, we introduce a linearization of $\mathtt{OLPO}$ and design a no-regret algorithm for this linearized problem. Although this method guarantees the desired sublinear rate (nearly matching the best rate for online calibration), it is computationally expensive when the group family $\mathcal{H}$ is large or infinite, since it enumerates all possible groups. To address scalability, we propose a second approach to $\mathtt{OLPO}$ that makes only a polynomial number of calls to an offline optimization (multicalibration evaluation) oracle, resulting in oracle-efficient online $\ell_1$-multicalibration with a corresponding rate of $\widetilde{\mathcal{O}}(T^{-1/4})$. Our framework also extends to certain infinite families of groups (e.g., all linear functions on the context space) by exploiting a $1$-Lipschitz property of the $\ell_1$-multicalibration error with respect to $\mathcal{H}$.
APA
Ghuge, R., Muthukumar, V. & Singla, S.. (2025). Improved and Oracle-Efficient Online $\ell_1$-Multicalibration. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:19437-19457 Available from https://proceedings.mlr.press/v267/ghuge25a.html.

Related Material