Discovering Physics Laws of Dynamical Systems via Invariant Function Learning

Shurui Gui, Xiner Li, Shuiwang Ji
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:20662-20693, 2025.

Abstract

We consider learning underlying laws of dynamical systems governed by ordinary differential equations (ODE). A key challenge is how to discover intrinsic dynamics across multiple environments while circumventing environment-specific mechanisms. Unlike prior work, we tackle more complex environments where changes extend beyond function coefficients to entirely different function forms. For example, we demonstrate the discovery of ideal pendulum’s natural motion $\alpha^2 \sin{\theta_t}$ by observing pendulum dynamics in different environments, such as the damped environment $\alpha^2 \sin(\theta_t) - \rho \omega_t$ and powered environment $\alpha^2 \sin(\theta_t) + \rho \frac{\omega_t}{\left|\omega_t\right|}$. Here, we formulate this problem as an invariant function learning task and propose a new method, known as Disentanglement of Invariant Functions (DIF), that is grounded in causal analysis. We propose a causal graph and design an encoder-decoder hypernetwork that explicitly disentangles invariant functions from environment-specific dynamics. The discovery of invariant functions is guaranteed by our information-based principle that enforces the independence between extracted invariant functions and environments. Quantitative comparisons with meta-learning and invariant learning baselines on three ODE systems demonstrate the effectiveness and efficiency of our method. Furthermore, symbolic regression explanation results highlight the ability of our framework to uncover intrinsic laws.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-gui25a, title = {Discovering Physics Laws of Dynamical Systems via Invariant Function Learning}, author = {Gui, Shurui and Li, Xiner and Ji, Shuiwang}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {20662--20693}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/gui25a/gui25a.pdf}, url = {https://proceedings.mlr.press/v267/gui25a.html}, abstract = {We consider learning underlying laws of dynamical systems governed by ordinary differential equations (ODE). A key challenge is how to discover intrinsic dynamics across multiple environments while circumventing environment-specific mechanisms. Unlike prior work, we tackle more complex environments where changes extend beyond function coefficients to entirely different function forms. For example, we demonstrate the discovery of ideal pendulum’s natural motion $\alpha^2 \sin{\theta_t}$ by observing pendulum dynamics in different environments, such as the damped environment $\alpha^2 \sin(\theta_t) - \rho \omega_t$ and powered environment $\alpha^2 \sin(\theta_t) + \rho \frac{\omega_t}{\left|\omega_t\right|}$. Here, we formulate this problem as an invariant function learning task and propose a new method, known as Disentanglement of Invariant Functions (DIF), that is grounded in causal analysis. We propose a causal graph and design an encoder-decoder hypernetwork that explicitly disentangles invariant functions from environment-specific dynamics. The discovery of invariant functions is guaranteed by our information-based principle that enforces the independence between extracted invariant functions and environments. Quantitative comparisons with meta-learning and invariant learning baselines on three ODE systems demonstrate the effectiveness and efficiency of our method. Furthermore, symbolic regression explanation results highlight the ability of our framework to uncover intrinsic laws.} }
Endnote
%0 Conference Paper %T Discovering Physics Laws of Dynamical Systems via Invariant Function Learning %A Shurui Gui %A Xiner Li %A Shuiwang Ji %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-gui25a %I PMLR %P 20662--20693 %U https://proceedings.mlr.press/v267/gui25a.html %V 267 %X We consider learning underlying laws of dynamical systems governed by ordinary differential equations (ODE). A key challenge is how to discover intrinsic dynamics across multiple environments while circumventing environment-specific mechanisms. Unlike prior work, we tackle more complex environments where changes extend beyond function coefficients to entirely different function forms. For example, we demonstrate the discovery of ideal pendulum’s natural motion $\alpha^2 \sin{\theta_t}$ by observing pendulum dynamics in different environments, such as the damped environment $\alpha^2 \sin(\theta_t) - \rho \omega_t$ and powered environment $\alpha^2 \sin(\theta_t) + \rho \frac{\omega_t}{\left|\omega_t\right|}$. Here, we formulate this problem as an invariant function learning task and propose a new method, known as Disentanglement of Invariant Functions (DIF), that is grounded in causal analysis. We propose a causal graph and design an encoder-decoder hypernetwork that explicitly disentangles invariant functions from environment-specific dynamics. The discovery of invariant functions is guaranteed by our information-based principle that enforces the independence between extracted invariant functions and environments. Quantitative comparisons with meta-learning and invariant learning baselines on three ODE systems demonstrate the effectiveness and efficiency of our method. Furthermore, symbolic regression explanation results highlight the ability of our framework to uncover intrinsic laws.
APA
Gui, S., Li, X. & Ji, S.. (2025). Discovering Physics Laws of Dynamical Systems via Invariant Function Learning. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:20662-20693 Available from https://proceedings.mlr.press/v267/gui25a.html.

Related Material