[edit]
Learnings from Scaling Visual Tokenizers for Reconstruction and Generation
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:22023-22043, 2025.
Abstract
Visual tokenization via auto-encoding empowers state-of-the-art image and video generative models by compressing pixels into a latent space. However, questions remain about how auto-encoder design impacts reconstruction and downstream generative performance. This work explores scaling in auto-encoders for reconstruction and generation by replacing the convolutional backbone with an enhanced Vision Transformer for Tokenization (ViTok). We find scaling the auto-encoder bottleneck correlates with reconstruction but exhibits a nuanced relationship with generation. Separately, encoder scaling yields no gains, while decoder scaling improves reconstruction with minimal impact on generation. As a result, we determine that scaling the current paradigm of auto-encoders is not effective for improving generation performance. Coupled with Diffusion Transformers, ViTok achieves competitive image reconstruction and generation performance on 256p and 512p ImageNet-1K. In videos, ViTok achieves SOTA reconstruction and generation performance on 16-frame 128p UCF-101.