GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation

Jiashu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, Alejandro Ribeiro
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:22647-22668, 2025.

Abstract

Existing approaches based on context prompting or reinforcement learning (RL) to improve the reasoning capacities of large language models (LLMs) depend on the LLMs’ internal knowledge to produce reliable Chain-Of-Thought (CoT). However, no matter the size of LLMs, certain problems cannot be resolved in a single forward pass. Meanwhile, agent-based reasoning systems require access to a comprehensive nonparametric knowledge base, which is often costly or not feasible for use in scientific and niche domains. We present Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input. GIVE guides the LLM agent to select the most pertinent expert data ($\textbf{observe}$), engage in query-specific associative thinking ($\textbf{reflect}$), and then synthesize this information to produce the final output ($\textbf{speak}$). Extensive experiments demonstrated the following benefits of our framework: (1) GIVE increases the performance of LLMs across various sizes. (2) In some scenarios, GIVE allows smaller LLMs to surpass larger, more sophisticated ones in scientific tasks ($\textbf{GPT3.5T + GIVE > GPT4}$). (3) GIVE is effective on scientific and open-domain assessments. (4) GIVE is a training-free method that enables LLMs to tackle new problems that extend beyond their training data (up to $\textbf{43.5}$% $\rightarrow$ $\textbf{88.2}$% accuracy improvement). (5) GIVE allows LLM agents to reason using both restricted (very small) and noisy (very large) knowledge sources, accommodating knowledge graphs (KG) ranging from $\textbf{135}$ to more than $\textbf{840k}$ nodes. (6) The reasoning process involved in GIVE is fully interpretable. Our code is available at https://github.com/Jason-Tree/GIVE

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-he25o, title = {{GIVE}: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation}, author = {He, Jiashu and Ma, Mingyu Derek and Fan, Jinxuan and Roth, Dan and Wang, Wei and Ribeiro, Alejandro}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {22647--22668}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/he25o/he25o.pdf}, url = {https://proceedings.mlr.press/v267/he25o.html}, abstract = {Existing approaches based on context prompting or reinforcement learning (RL) to improve the reasoning capacities of large language models (LLMs) depend on the LLMs’ internal knowledge to produce reliable Chain-Of-Thought (CoT). However, no matter the size of LLMs, certain problems cannot be resolved in a single forward pass. Meanwhile, agent-based reasoning systems require access to a comprehensive nonparametric knowledge base, which is often costly or not feasible for use in scientific and niche domains. We present Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input. GIVE guides the LLM agent to select the most pertinent expert data ($\textbf{observe}$), engage in query-specific associative thinking ($\textbf{reflect}$), and then synthesize this information to produce the final output ($\textbf{speak}$). Extensive experiments demonstrated the following benefits of our framework: (1) GIVE increases the performance of LLMs across various sizes. (2) In some scenarios, GIVE allows smaller LLMs to surpass larger, more sophisticated ones in scientific tasks ($\textbf{GPT3.5T + GIVE > GPT4}$). (3) GIVE is effective on scientific and open-domain assessments. (4) GIVE is a training-free method that enables LLMs to tackle new problems that extend beyond their training data (up to $\textbf{43.5}$% $\rightarrow$ $\textbf{88.2}$% accuracy improvement). (5) GIVE allows LLM agents to reason using both restricted (very small) and noisy (very large) knowledge sources, accommodating knowledge graphs (KG) ranging from $\textbf{135}$ to more than $\textbf{840k}$ nodes. (6) The reasoning process involved in GIVE is fully interpretable. Our code is available at https://github.com/Jason-Tree/GIVE} }
Endnote
%0 Conference Paper %T GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation %A Jiashu He %A Mingyu Derek Ma %A Jinxuan Fan %A Dan Roth %A Wei Wang %A Alejandro Ribeiro %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-he25o %I PMLR %P 22647--22668 %U https://proceedings.mlr.press/v267/he25o.html %V 267 %X Existing approaches based on context prompting or reinforcement learning (RL) to improve the reasoning capacities of large language models (LLMs) depend on the LLMs’ internal knowledge to produce reliable Chain-Of-Thought (CoT). However, no matter the size of LLMs, certain problems cannot be resolved in a single forward pass. Meanwhile, agent-based reasoning systems require access to a comprehensive nonparametric knowledge base, which is often costly or not feasible for use in scientific and niche domains. We present Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input. GIVE guides the LLM agent to select the most pertinent expert data ($\textbf{observe}$), engage in query-specific associative thinking ($\textbf{reflect}$), and then synthesize this information to produce the final output ($\textbf{speak}$). Extensive experiments demonstrated the following benefits of our framework: (1) GIVE increases the performance of LLMs across various sizes. (2) In some scenarios, GIVE allows smaller LLMs to surpass larger, more sophisticated ones in scientific tasks ($\textbf{GPT3.5T + GIVE > GPT4}$). (3) GIVE is effective on scientific and open-domain assessments. (4) GIVE is a training-free method that enables LLMs to tackle new problems that extend beyond their training data (up to $\textbf{43.5}$% $\rightarrow$ $\textbf{88.2}$% accuracy improvement). (5) GIVE allows LLM agents to reason using both restricted (very small) and noisy (very large) knowledge sources, accommodating knowledge graphs (KG) ranging from $\textbf{135}$ to more than $\textbf{840k}$ nodes. (6) The reasoning process involved in GIVE is fully interpretable. Our code is available at https://github.com/Jason-Tree/GIVE
APA
He, J., Ma, M.D., Fan, J., Roth, D., Wang, W. & Ribeiro, A.. (2025). GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:22647-22668 Available from https://proceedings.mlr.press/v267/he25o.html.

Related Material