Private Federated Learning using Preference-Optimized Synthetic Data

Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, Giulia Fanti
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:24025-24044, 2025.

Abstract

In practical settings, differentially private federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri closes the gap in performance between the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-hou25g, title = {Private Federated Learning using Preference-Optimized Synthetic Data}, author = {Hou, Charlie and Wang, Mei-Yu and Zhu, Yige and Lazar, Daniel and Fanti, Giulia}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {24025--24044}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/hou25g/hou25g.pdf}, url = {https://proceedings.mlr.press/v267/hou25g.html}, abstract = {In practical settings, differentially private federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri closes the gap in performance between the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.} }
Endnote
%0 Conference Paper %T Private Federated Learning using Preference-Optimized Synthetic Data %A Charlie Hou %A Mei-Yu Wang %A Yige Zhu %A Daniel Lazar %A Giulia Fanti %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-hou25g %I PMLR %P 24025--24044 %U https://proceedings.mlr.press/v267/hou25g.html %V 267 %X In practical settings, differentially private federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri closes the gap in performance between the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
APA
Hou, C., Wang, M., Zhu, Y., Lazar, D. & Fanti, G.. (2025). Private Federated Learning using Preference-Optimized Synthetic Data. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:24025-24044 Available from https://proceedings.mlr.press/v267/hou25g.html.

Related Material