VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians

Pengchong Hu, Zhizhong Han
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:24347-24370, 2025.

Abstract

Jointly estimating camera poses and mapping scenes from RGBD images is a fundamental task in simultaneous localization and mapping (SLAM). State-of-the-art methods employ 3D Gaussians to represent a scene, and render these Gaussians through splatting for higher efficiency and better rendering. However, these methods cannot scale up to extremely large scenes, due to the inefficient tracking and mapping strategies that need to optimize all 3D Gaussians in the limited GPU memories throughout the training to maintain the geometry and color consistency to previous RGBD observations. To resolve this issue, we propose novel tracking and mapping strategies to work with a novel 3D representation, dubbed view-tied 3D Gaussians, for RGBD SLAM systems. View-tied 3D Gaussians is a kind of simplified Gaussians, which is tied to depth pixels, without needing to learn locations, rotations, and multi-dimensional variances. Tying Gaussians to views not only significantly saves storage but also allows us to employ many more Gaussians to represent local details in the limited GPU memory. Moreover, our strategies remove the need of maintaining all Gaussians learnable throughout the training, while improving rendering quality, and tracking accuracy. We justify the effectiveness of these designs, and report better performance over the latest methods on the widely used benchmarks in terms of rendering and tracking accuracy and scalability. Please see our project page for code and videos at https://machineperceptionlab.github.io/VTGaussian-SLAM-Project.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-hu25h, title = {{VTG}aussian-{SLAM}: {RGBD} {SLAM} for Large Scale Scenes with Splatting View-Tied 3{D} {G}aussians}, author = {Hu, Pengchong and Han, Zhizhong}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {24347--24370}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/hu25h/hu25h.pdf}, url = {https://proceedings.mlr.press/v267/hu25h.html}, abstract = {Jointly estimating camera poses and mapping scenes from RGBD images is a fundamental task in simultaneous localization and mapping (SLAM). State-of-the-art methods employ 3D Gaussians to represent a scene, and render these Gaussians through splatting for higher efficiency and better rendering. However, these methods cannot scale up to extremely large scenes, due to the inefficient tracking and mapping strategies that need to optimize all 3D Gaussians in the limited GPU memories throughout the training to maintain the geometry and color consistency to previous RGBD observations. To resolve this issue, we propose novel tracking and mapping strategies to work with a novel 3D representation, dubbed view-tied 3D Gaussians, for RGBD SLAM systems. View-tied 3D Gaussians is a kind of simplified Gaussians, which is tied to depth pixels, without needing to learn locations, rotations, and multi-dimensional variances. Tying Gaussians to views not only significantly saves storage but also allows us to employ many more Gaussians to represent local details in the limited GPU memory. Moreover, our strategies remove the need of maintaining all Gaussians learnable throughout the training, while improving rendering quality, and tracking accuracy. We justify the effectiveness of these designs, and report better performance over the latest methods on the widely used benchmarks in terms of rendering and tracking accuracy and scalability. Please see our project page for code and videos at https://machineperceptionlab.github.io/VTGaussian-SLAM-Project.} }
Endnote
%0 Conference Paper %T VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians %A Pengchong Hu %A Zhizhong Han %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-hu25h %I PMLR %P 24347--24370 %U https://proceedings.mlr.press/v267/hu25h.html %V 267 %X Jointly estimating camera poses and mapping scenes from RGBD images is a fundamental task in simultaneous localization and mapping (SLAM). State-of-the-art methods employ 3D Gaussians to represent a scene, and render these Gaussians through splatting for higher efficiency and better rendering. However, these methods cannot scale up to extremely large scenes, due to the inefficient tracking and mapping strategies that need to optimize all 3D Gaussians in the limited GPU memories throughout the training to maintain the geometry and color consistency to previous RGBD observations. To resolve this issue, we propose novel tracking and mapping strategies to work with a novel 3D representation, dubbed view-tied 3D Gaussians, for RGBD SLAM systems. View-tied 3D Gaussians is a kind of simplified Gaussians, which is tied to depth pixels, without needing to learn locations, rotations, and multi-dimensional variances. Tying Gaussians to views not only significantly saves storage but also allows us to employ many more Gaussians to represent local details in the limited GPU memory. Moreover, our strategies remove the need of maintaining all Gaussians learnable throughout the training, while improving rendering quality, and tracking accuracy. We justify the effectiveness of these designs, and report better performance over the latest methods on the widely used benchmarks in terms of rendering and tracking accuracy and scalability. Please see our project page for code and videos at https://machineperceptionlab.github.io/VTGaussian-SLAM-Project.
APA
Hu, P. & Han, Z.. (2025). VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:24347-24370 Available from https://proceedings.mlr.press/v267/hu25h.html.

Related Material