OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning

Cong Hua, Qianqian Xu, Zhiyong Yang, Zitai Wang, Shilong Bao, Qingming Huang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:24975-25020, 2025.

Abstract

Prompt tuning adapts Vision-Language Models like CLIP to open-world tasks with minimal training costs. In this direction, one typical paradigm evaluates model performance separately on known classes (i.e., base domain) and unseen classes (i.e., new domain). However, real-world scenarios require models to handle inputs without prior domain knowledge. This practical challenge has spurred the development of open-world prompt tuning, which demands a unified evaluation of two stages: 1) detecting whether an input belongs to the base or new domain (P1), and 2) classifying the sample into its correct class (P2). What’s more, as domain distributions are generally unknown, a proper metric should be insensitive to varying base/new sample ratios (P3). However, we find that current metrics, including HM, overall accuracy, and AUROC, fail to satisfy these three properties simultaneously. To bridge this gap, we propose $\mathsf{OpenworldAUC}$, a unified metric that jointly assesses detection and classification through pairwise instance comparisons. To optimize $\mathsf{OpenworldAUC}$ effectively, we introduce Gated Mixture-of-Prompts (GMoP), which employs domain-specific prompts and a gating mechanism to dynamically balance detection and classification. Theoretical guarantees ensure generalization of GMoP under practical conditions. Experiments on 15 benchmarks in open-world scenarios show GMoP achieves SOTA performance on $\mathsf{OpenworldAUC}$ and other metrics.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-hua25d, title = {{O}penworld{AUC}: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning}, author = {Hua, Cong and Xu, Qianqian and Yang, Zhiyong and Wang, Zitai and Bao, Shilong and Huang, Qingming}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {24975--25020}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/hua25d/hua25d.pdf}, url = {https://proceedings.mlr.press/v267/hua25d.html}, abstract = {Prompt tuning adapts Vision-Language Models like CLIP to open-world tasks with minimal training costs. In this direction, one typical paradigm evaluates model performance separately on known classes (i.e., base domain) and unseen classes (i.e., new domain). However, real-world scenarios require models to handle inputs without prior domain knowledge. This practical challenge has spurred the development of open-world prompt tuning, which demands a unified evaluation of two stages: 1) detecting whether an input belongs to the base or new domain (P1), and 2) classifying the sample into its correct class (P2). What’s more, as domain distributions are generally unknown, a proper metric should be insensitive to varying base/new sample ratios (P3). However, we find that current metrics, including HM, overall accuracy, and AUROC, fail to satisfy these three properties simultaneously. To bridge this gap, we propose $\mathsf{OpenworldAUC}$, a unified metric that jointly assesses detection and classification through pairwise instance comparisons. To optimize $\mathsf{OpenworldAUC}$ effectively, we introduce Gated Mixture-of-Prompts (GMoP), which employs domain-specific prompts and a gating mechanism to dynamically balance detection and classification. Theoretical guarantees ensure generalization of GMoP under practical conditions. Experiments on 15 benchmarks in open-world scenarios show GMoP achieves SOTA performance on $\mathsf{OpenworldAUC}$ and other metrics.} }
Endnote
%0 Conference Paper %T OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning %A Cong Hua %A Qianqian Xu %A Zhiyong Yang %A Zitai Wang %A Shilong Bao %A Qingming Huang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-hua25d %I PMLR %P 24975--25020 %U https://proceedings.mlr.press/v267/hua25d.html %V 267 %X Prompt tuning adapts Vision-Language Models like CLIP to open-world tasks with minimal training costs. In this direction, one typical paradigm evaluates model performance separately on known classes (i.e., base domain) and unseen classes (i.e., new domain). However, real-world scenarios require models to handle inputs without prior domain knowledge. This practical challenge has spurred the development of open-world prompt tuning, which demands a unified evaluation of two stages: 1) detecting whether an input belongs to the base or new domain (P1), and 2) classifying the sample into its correct class (P2). What’s more, as domain distributions are generally unknown, a proper metric should be insensitive to varying base/new sample ratios (P3). However, we find that current metrics, including HM, overall accuracy, and AUROC, fail to satisfy these three properties simultaneously. To bridge this gap, we propose $\mathsf{OpenworldAUC}$, a unified metric that jointly assesses detection and classification through pairwise instance comparisons. To optimize $\mathsf{OpenworldAUC}$ effectively, we introduce Gated Mixture-of-Prompts (GMoP), which employs domain-specific prompts and a gating mechanism to dynamically balance detection and classification. Theoretical guarantees ensure generalization of GMoP under practical conditions. Experiments on 15 benchmarks in open-world scenarios show GMoP achieves SOTA performance on $\mathsf{OpenworldAUC}$ and other metrics.
APA
Hua, C., Xu, Q., Yang, Z., Wang, Z., Bao, S. & Huang, Q.. (2025). OpenworldAUC: Towards Unified Evaluation and Optimization for Open-world Prompt Tuning. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:24975-25020 Available from https://proceedings.mlr.press/v267/hua25d.html.

Related Material