Learn Beneficial Noise as Graph Augmentation

Siqi Huang, Yanchen Xu, Hongyuan Zhang, Xuelong Li
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:25987-26001, 2025.

Abstract

Although graph contrastive learning (GCL) has been widely investigated, it is still a challenge to generate effective and stable graph augmentations. Existing methods often apply heuristic augmentation like random edge dropping, which may disrupt important graph structures and result in unstable GCL performance. In this paper, we propose Positive-incentive Noise driven Graph Data Augmentation (PiNGDA), where positive-incentive noise (pi-noise) scientifically analyzes the beneficial effect of noise under the information theory. To bridge the standard GCL and pi-noise framework, we design a Gaussian auxiliary variable to convert the loss function to information entropy. We prove that the standard GCL with pre-defined augmentations is equivalent to estimate the beneficial noise via the point estimation. Following our analysis, PiNGDA is derived from learning the beneficial noise on both topology and attributes through a trainable noise generator for graph augmentations, instead of the simple estimation. Since the generator learns how to produce beneficial perturbations on graph topology and node attributes, PiNGDA is more reliable compared with the existing methods. Extensive experimental results validate the effectiveness and stability of PiNGDA.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-huang25ao, title = {Learn Beneficial Noise as Graph Augmentation}, author = {Huang, Siqi and Xu, Yanchen and Zhang, Hongyuan and Li, Xuelong}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {25987--26001}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/huang25ao/huang25ao.pdf}, url = {https://proceedings.mlr.press/v267/huang25ao.html}, abstract = {Although graph contrastive learning (GCL) has been widely investigated, it is still a challenge to generate effective and stable graph augmentations. Existing methods often apply heuristic augmentation like random edge dropping, which may disrupt important graph structures and result in unstable GCL performance. In this paper, we propose Positive-incentive Noise driven Graph Data Augmentation (PiNGDA), where positive-incentive noise (pi-noise) scientifically analyzes the beneficial effect of noise under the information theory. To bridge the standard GCL and pi-noise framework, we design a Gaussian auxiliary variable to convert the loss function to information entropy. We prove that the standard GCL with pre-defined augmentations is equivalent to estimate the beneficial noise via the point estimation. Following our analysis, PiNGDA is derived from learning the beneficial noise on both topology and attributes through a trainable noise generator for graph augmentations, instead of the simple estimation. Since the generator learns how to produce beneficial perturbations on graph topology and node attributes, PiNGDA is more reliable compared with the existing methods. Extensive experimental results validate the effectiveness and stability of PiNGDA.} }
Endnote
%0 Conference Paper %T Learn Beneficial Noise as Graph Augmentation %A Siqi Huang %A Yanchen Xu %A Hongyuan Zhang %A Xuelong Li %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-huang25ao %I PMLR %P 25987--26001 %U https://proceedings.mlr.press/v267/huang25ao.html %V 267 %X Although graph contrastive learning (GCL) has been widely investigated, it is still a challenge to generate effective and stable graph augmentations. Existing methods often apply heuristic augmentation like random edge dropping, which may disrupt important graph structures and result in unstable GCL performance. In this paper, we propose Positive-incentive Noise driven Graph Data Augmentation (PiNGDA), where positive-incentive noise (pi-noise) scientifically analyzes the beneficial effect of noise under the information theory. To bridge the standard GCL and pi-noise framework, we design a Gaussian auxiliary variable to convert the loss function to information entropy. We prove that the standard GCL with pre-defined augmentations is equivalent to estimate the beneficial noise via the point estimation. Following our analysis, PiNGDA is derived from learning the beneficial noise on both topology and attributes through a trainable noise generator for graph augmentations, instead of the simple estimation. Since the generator learns how to produce beneficial perturbations on graph topology and node attributes, PiNGDA is more reliable compared with the existing methods. Extensive experimental results validate the effectiveness and stability of PiNGDA.
APA
Huang, S., Xu, Y., Zhang, H. & Li, X.. (2025). Learn Beneficial Noise as Graph Augmentation. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:25987-26001 Available from https://proceedings.mlr.press/v267/huang25ao.html.

Related Material