Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning

Jungtaek Kim
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:29988-30010, 2025.

Abstract

Bayesian optimization has attracted huge attention from diverse research areas in science and engineering, since it is capable of efficiently finding a global optimum of an expensive-to-evaluate black-box function. In general, a probabilistic regression model is widely used as a surrogate function to model an explicit distribution over function evaluations given an input to estimate and a training dataset. Beyond the probabilistic regression-based methods, density ratio estimation-based Bayesian optimization has been suggested in order to estimate a density ratio of the groups relatively close and relatively far to a global optimum. Developing this line of research further, supervised classifiers are employed to estimate a class probability for the two groups instead of a density ratio. However, the supervised classifiers used in this strategy are prone to be overconfident for known knowledge on global solution candidates. Supposing that we have access to unlabeled points, e.g., predefined fixed-size pools, we propose density ratio estimation-based Bayesian optimization with semi-supervised learning to solve this challenge. Finally, we show the empirical results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool, and analyze the validity of our methods in diverse experiments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-kim25c, title = {Density Ratio Estimation-based {B}ayesian Optimization with Semi-Supervised Learning}, author = {Kim, Jungtaek}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {29988--30010}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/kim25c/kim25c.pdf}, url = {https://proceedings.mlr.press/v267/kim25c.html}, abstract = {Bayesian optimization has attracted huge attention from diverse research areas in science and engineering, since it is capable of efficiently finding a global optimum of an expensive-to-evaluate black-box function. In general, a probabilistic regression model is widely used as a surrogate function to model an explicit distribution over function evaluations given an input to estimate and a training dataset. Beyond the probabilistic regression-based methods, density ratio estimation-based Bayesian optimization has been suggested in order to estimate a density ratio of the groups relatively close and relatively far to a global optimum. Developing this line of research further, supervised classifiers are employed to estimate a class probability for the two groups instead of a density ratio. However, the supervised classifiers used in this strategy are prone to be overconfident for known knowledge on global solution candidates. Supposing that we have access to unlabeled points, e.g., predefined fixed-size pools, we propose density ratio estimation-based Bayesian optimization with semi-supervised learning to solve this challenge. Finally, we show the empirical results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool, and analyze the validity of our methods in diverse experiments.} }
Endnote
%0 Conference Paper %T Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning %A Jungtaek Kim %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-kim25c %I PMLR %P 29988--30010 %U https://proceedings.mlr.press/v267/kim25c.html %V 267 %X Bayesian optimization has attracted huge attention from diverse research areas in science and engineering, since it is capable of efficiently finding a global optimum of an expensive-to-evaluate black-box function. In general, a probabilistic regression model is widely used as a surrogate function to model an explicit distribution over function evaluations given an input to estimate and a training dataset. Beyond the probabilistic regression-based methods, density ratio estimation-based Bayesian optimization has been suggested in order to estimate a density ratio of the groups relatively close and relatively far to a global optimum. Developing this line of research further, supervised classifiers are employed to estimate a class probability for the two groups instead of a density ratio. However, the supervised classifiers used in this strategy are prone to be overconfident for known knowledge on global solution candidates. Supposing that we have access to unlabeled points, e.g., predefined fixed-size pools, we propose density ratio estimation-based Bayesian optimization with semi-supervised learning to solve this challenge. Finally, we show the empirical results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool, and analyze the validity of our methods in diverse experiments.
APA
Kim, J.. (2025). Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:29988-30010 Available from https://proceedings.mlr.press/v267/kim25c.html.

Related Material