[edit]
Position: You Can’t Manufacture a NeRF
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:81652-81664, 2025.
Abstract
In this paper, we examine the manufacturability gap in state-of-the-art generative models for 3D object representations. Many models for generating 3D assets focus on rendering virtual content and do not consider the constraints of real-world manufacturing, such as milling, casting, or injection molding. We demonstrate that existing generative models for computer-aided design representation do not generalize outside of their training datasets or to unmodified real, human-created objects. We identify limitations with the current approaches, including missing manufacturing-readable semantics, the inability to decompose complex shapes into parameterized segments appropriate for computer-aided manufacturing, and a lack of appropriate scoring metrics to assess the generated output versus the true reconstruction. The academic community could greatly impact real-world manufacturing by rallying around pathways to solve these challenges. We offer revised, more realistic datasets and baseline benchmarks as a step in targeting the challenge. In evaluating these datasets, we find that existing models are severely overfit to simpler data.