Shielded Diffusion: Generating Novel and Diverse Images using Sparse Repellency

Michael Kirchhof, James Thornton, Louis Béthune, Pierre Ablin, Eugene Ndiaye, Marco Cuturi
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:30911-30942, 2025.

Abstract

The adoption of text-to-image diffusion models raises concerns over reliability, drawing scrutiny under the lens of various metrics like calibration, fairness, or compute efficiency. We focus in this work on two issues that arise when deploying these models: a lack of diversity when prompting images, and a tendency to recreate images from the training set. To solve both problems, we propose a method that coaxes the sampled trajectories of pretrained diffusion models to land on images that fall outside of a reference set. We achieve this by adding repellency terms to the diffusion SDE throughout the generation trajectory, which are triggered whenever the path is expected to land too closely to an image in the shielded reference set. Our method is sparse in the sense that these repellency terms are zero and inactive most of the time, and even more so towards the end of the generation trajectory. Our method, named SPELL for sparse repellency, can be used either with a static reference set that contains protected images, or dynamically, by updating the set at each timestep with the expected images concurrently generated within a batch, and with the images of previously generated batches. We show that adding SPELL to popular diffusion models improves their diversity while impacting their FID only marginally, and performs comparatively better than other recent training-free diversity methods. We also demonstrate how SPELL can ensure a shielded generation away from a very large set of protected images by considering all 1.2M images from ImageNet as the protected set.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-kirchhof25a, title = {Shielded Diffusion: Generating Novel and Diverse Images using Sparse Repellency}, author = {Kirchhof, Michael and Thornton, James and B\'{e}thune, Louis and Ablin, Pierre and Ndiaye, Eugene and Cuturi, Marco}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {30911--30942}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/kirchhof25a/kirchhof25a.pdf}, url = {https://proceedings.mlr.press/v267/kirchhof25a.html}, abstract = {The adoption of text-to-image diffusion models raises concerns over reliability, drawing scrutiny under the lens of various metrics like calibration, fairness, or compute efficiency. We focus in this work on two issues that arise when deploying these models: a lack of diversity when prompting images, and a tendency to recreate images from the training set. To solve both problems, we propose a method that coaxes the sampled trajectories of pretrained diffusion models to land on images that fall outside of a reference set. We achieve this by adding repellency terms to the diffusion SDE throughout the generation trajectory, which are triggered whenever the path is expected to land too closely to an image in the shielded reference set. Our method is sparse in the sense that these repellency terms are zero and inactive most of the time, and even more so towards the end of the generation trajectory. Our method, named SPELL for sparse repellency, can be used either with a static reference set that contains protected images, or dynamically, by updating the set at each timestep with the expected images concurrently generated within a batch, and with the images of previously generated batches. We show that adding SPELL to popular diffusion models improves their diversity while impacting their FID only marginally, and performs comparatively better than other recent training-free diversity methods. We also demonstrate how SPELL can ensure a shielded generation away from a very large set of protected images by considering all 1.2M images from ImageNet as the protected set.} }
Endnote
%0 Conference Paper %T Shielded Diffusion: Generating Novel and Diverse Images using Sparse Repellency %A Michael Kirchhof %A James Thornton %A Louis Béthune %A Pierre Ablin %A Eugene Ndiaye %A Marco Cuturi %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-kirchhof25a %I PMLR %P 30911--30942 %U https://proceedings.mlr.press/v267/kirchhof25a.html %V 267 %X The adoption of text-to-image diffusion models raises concerns over reliability, drawing scrutiny under the lens of various metrics like calibration, fairness, or compute efficiency. We focus in this work on two issues that arise when deploying these models: a lack of diversity when prompting images, and a tendency to recreate images from the training set. To solve both problems, we propose a method that coaxes the sampled trajectories of pretrained diffusion models to land on images that fall outside of a reference set. We achieve this by adding repellency terms to the diffusion SDE throughout the generation trajectory, which are triggered whenever the path is expected to land too closely to an image in the shielded reference set. Our method is sparse in the sense that these repellency terms are zero and inactive most of the time, and even more so towards the end of the generation trajectory. Our method, named SPELL for sparse repellency, can be used either with a static reference set that contains protected images, or dynamically, by updating the set at each timestep with the expected images concurrently generated within a batch, and with the images of previously generated batches. We show that adding SPELL to popular diffusion models improves their diversity while impacting their FID only marginally, and performs comparatively better than other recent training-free diversity methods. We also demonstrate how SPELL can ensure a shielded generation away from a very large set of protected images by considering all 1.2M images from ImageNet as the protected set.
APA
Kirchhof, M., Thornton, J., Béthune, L., Ablin, P., Ndiaye, E. & Cuturi, M.. (2025). Shielded Diffusion: Generating Novel and Diverse Images using Sparse Repellency. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:30911-30942 Available from https://proceedings.mlr.press/v267/kirchhof25a.html.

Related Material