[edit]
NMA-tune: Generating Highly Designable and Dynamics Aware Protein Backbones
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:31299-31321, 2025.
Abstract
Protein’s backbone flexibility is a crucial property that heavily influences its functionality. Recent work in the field of protein diffusion probabilistic modelling has leveraged Normal Mode Analysis (NMA) and, for the first time, introduced information about large scale protein motion into the generative process. However, obtaining molecules with both the desired dynamics and designable quality has proven challenging. In this work, we present NMA-tune, a new method that introduces the dynamics information to the protein design stage. NMA-tune uses a trainable component to condition the backbone generation on the lowest normal mode of oscillation. We implement NMA-tune as a plug-and-play extension to RFdiffusion, show that the proportion of samples with high quality structure and the desired dynamics is improved as compared to other methods without the trainable component, and we show the presence of the targeted modes in the Molecular Dynamics simulations.