[edit]
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:31560-31589, 2025.
Abstract
Markov processes serve as universal models for many real-world random processes. This paper presents a data-driven approach to learning these models through the spectral decomposition of the infinitesimal generator (IG) of the Markov semigroup. Its unbounded nature complicates traditional methods such as vector-valued regression and Hilbert-Schmidt operator analysis. Existing techniques, including physics-informed kernel regression, are computationally expensive and limited in scope, with no recovery guarantees for transfer operator methods when the time-lag is small. We propose a novel method leveraging the IG’s resolvent, characterized by the Laplace transform of transfer operators. This approach is robust to time-lag variations, ensuring accurate eigenvalue learning even for small time-lags. Our statistical analysis applies to a broader class of Markov processes than current methods while reducing computational complexity from quadratic to linear in the state dimension. Finally, we demonstrate our theoretical findings in several experiments.