iN2V: Bringing Transductive Node Embeddings to Inductive Graphs

Nicolas Lell, Ansgar Scherp
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:33918-33940, 2025.

Abstract

Shallow node embeddings like node2vec (N2V) can be used for nodes without features or to supplement existing features with structure-based information. Embedding methods like N2V are limited in their application on new nodes, which restricts them to the transductive setting where the entire graph, including the test nodes, is available during training. We propose inductive node2vec (iN2V), which combines a post-hoc procedure to compute embeddings for nodes unseen during training and modifications to the original N2V training procedure to prepare the embeddings for this post-hoc procedure. We conduct experiments on several benchmark datasets and demonstrate that iN2V is an effective approach to bringing transductive embeddings to an inductive setting. Using iN2V embeddings improves node classification by 1 point on average, with up to 6 points of improvement depending on the dataset and the number of unseen nodes. Our iN2V is a plug-in approach to create new or enrich existing embeddings. It can also be combined with other embedding methods, making it a versatile approach for inductive node representation learning. Code to reproduce the results is available at https://github.com/Foisunt/iN2V.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-lell25a, title = {i{N}2{V}: Bringing Transductive Node Embeddings to Inductive Graphs}, author = {Lell, Nicolas and Scherp, Ansgar}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {33918--33940}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/lell25a/lell25a.pdf}, url = {https://proceedings.mlr.press/v267/lell25a.html}, abstract = {Shallow node embeddings like node2vec (N2V) can be used for nodes without features or to supplement existing features with structure-based information. Embedding methods like N2V are limited in their application on new nodes, which restricts them to the transductive setting where the entire graph, including the test nodes, is available during training. We propose inductive node2vec (iN2V), which combines a post-hoc procedure to compute embeddings for nodes unseen during training and modifications to the original N2V training procedure to prepare the embeddings for this post-hoc procedure. We conduct experiments on several benchmark datasets and demonstrate that iN2V is an effective approach to bringing transductive embeddings to an inductive setting. Using iN2V embeddings improves node classification by 1 point on average, with up to 6 points of improvement depending on the dataset and the number of unseen nodes. Our iN2V is a plug-in approach to create new or enrich existing embeddings. It can also be combined with other embedding methods, making it a versatile approach for inductive node representation learning. Code to reproduce the results is available at https://github.com/Foisunt/iN2V.} }
Endnote
%0 Conference Paper %T iN2V: Bringing Transductive Node Embeddings to Inductive Graphs %A Nicolas Lell %A Ansgar Scherp %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-lell25a %I PMLR %P 33918--33940 %U https://proceedings.mlr.press/v267/lell25a.html %V 267 %X Shallow node embeddings like node2vec (N2V) can be used for nodes without features or to supplement existing features with structure-based information. Embedding methods like N2V are limited in their application on new nodes, which restricts them to the transductive setting where the entire graph, including the test nodes, is available during training. We propose inductive node2vec (iN2V), which combines a post-hoc procedure to compute embeddings for nodes unseen during training and modifications to the original N2V training procedure to prepare the embeddings for this post-hoc procedure. We conduct experiments on several benchmark datasets and demonstrate that iN2V is an effective approach to bringing transductive embeddings to an inductive setting. Using iN2V embeddings improves node classification by 1 point on average, with up to 6 points of improvement depending on the dataset and the number of unseen nodes. Our iN2V is a plug-in approach to create new or enrich existing embeddings. It can also be combined with other embedding methods, making it a versatile approach for inductive node representation learning. Code to reproduce the results is available at https://github.com/Foisunt/iN2V.
APA
Lell, N. & Scherp, A.. (2025). iN2V: Bringing Transductive Node Embeddings to Inductive Graphs. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:33918-33940 Available from https://proceedings.mlr.press/v267/lell25a.html.

Related Material