Safety Alignment Can Be Not Superficial With Explicit Safety Signals

Jianwei Li, Jung-Eun Kim
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:35101-35135, 2025.

Abstract

Recent studies on the safety alignment of large language models (LLMs) have revealed that existing approaches often operate superficially, leaving models vulnerable to various adversarial attacks. Despite their significance, these studies generally fail to offer actionable solutions beyond data augmentation for achieving more robust safety mechanisms. This paper identifies a fundamental cause of this superficiality: existing alignment approaches often presume that models can implicitly learn a safety-related reasoning task during the alignment process, enabling them to refuse harmful requests. However, the learned safety signals are often diluted by other competing objectives, leading models to struggle with drawing a firm safety-conscious decision boundary when confronted with adversarial attacks. Based on this observation, by explicitly introducing a safety-related binary classification task and integrating its signals with our attention and decoding strategies, we eliminate this ambiguity and allow models to respond more responsibly to malicious queries. We emphasize that, with less than 0.2x overhead cost, our approach enables LLMs to assess the safety of both the query and the previously generated tokens at each necessary generating step. Extensive experiments demonstrate that our method significantly improves the resilience of LLMs against various adversarial attacks, offering a promising pathway toward more robust generative AI systems.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-li25av, title = {Safety Alignment Can Be Not Superficial With Explicit Safety Signals}, author = {Li, Jianwei and Kim, Jung-Eun}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {35101--35135}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/li25av/li25av.pdf}, url = {https://proceedings.mlr.press/v267/li25av.html}, abstract = {Recent studies on the safety alignment of large language models (LLMs) have revealed that existing approaches often operate superficially, leaving models vulnerable to various adversarial attacks. Despite their significance, these studies generally fail to offer actionable solutions beyond data augmentation for achieving more robust safety mechanisms. This paper identifies a fundamental cause of this superficiality: existing alignment approaches often presume that models can implicitly learn a safety-related reasoning task during the alignment process, enabling them to refuse harmful requests. However, the learned safety signals are often diluted by other competing objectives, leading models to struggle with drawing a firm safety-conscious decision boundary when confronted with adversarial attacks. Based on this observation, by explicitly introducing a safety-related binary classification task and integrating its signals with our attention and decoding strategies, we eliminate this ambiguity and allow models to respond more responsibly to malicious queries. We emphasize that, with less than 0.2x overhead cost, our approach enables LLMs to assess the safety of both the query and the previously generated tokens at each necessary generating step. Extensive experiments demonstrate that our method significantly improves the resilience of LLMs against various adversarial attacks, offering a promising pathway toward more robust generative AI systems.} }
Endnote
%0 Conference Paper %T Safety Alignment Can Be Not Superficial With Explicit Safety Signals %A Jianwei Li %A Jung-Eun Kim %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-li25av %I PMLR %P 35101--35135 %U https://proceedings.mlr.press/v267/li25av.html %V 267 %X Recent studies on the safety alignment of large language models (LLMs) have revealed that existing approaches often operate superficially, leaving models vulnerable to various adversarial attacks. Despite their significance, these studies generally fail to offer actionable solutions beyond data augmentation for achieving more robust safety mechanisms. This paper identifies a fundamental cause of this superficiality: existing alignment approaches often presume that models can implicitly learn a safety-related reasoning task during the alignment process, enabling them to refuse harmful requests. However, the learned safety signals are often diluted by other competing objectives, leading models to struggle with drawing a firm safety-conscious decision boundary when confronted with adversarial attacks. Based on this observation, by explicitly introducing a safety-related binary classification task and integrating its signals with our attention and decoding strategies, we eliminate this ambiguity and allow models to respond more responsibly to malicious queries. We emphasize that, with less than 0.2x overhead cost, our approach enables LLMs to assess the safety of both the query and the previously generated tokens at each necessary generating step. Extensive experiments demonstrate that our method significantly improves the resilience of LLMs against various adversarial attacks, offering a promising pathway toward more robust generative AI systems.
APA
Li, J. & Kim, J.. (2025). Safety Alignment Can Be Not Superficial With Explicit Safety Signals. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:35101-35135 Available from https://proceedings.mlr.press/v267/li25av.html.

Related Material