LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models

Fanfei Li, Thomas Klein, Wieland Brendel, Robert Geirhos, Roland S. Zimmermann
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:35136-35167, 2025.

Abstract

Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today’s large, web-scraped datasets, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-li25aw, title = {{LAION}-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models}, author = {Li, Fanfei and Klein, Thomas and Brendel, Wieland and Geirhos, Robert and Zimmermann, Roland S.}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {35136--35167}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/li25aw/li25aw.pdf}, url = {https://proceedings.mlr.press/v267/li25aw.html}, abstract = {Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today’s large, web-scraped datasets, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.} }
Endnote
%0 Conference Paper %T LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models %A Fanfei Li %A Thomas Klein %A Wieland Brendel %A Robert Geirhos %A Roland S. Zimmermann %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-li25aw %I PMLR %P 35136--35167 %U https://proceedings.mlr.press/v267/li25aw.html %V 267 %X Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today’s large, web-scraped datasets, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.
APA
Li, F., Klein, T., Brendel, W., Geirhos, R. & Zimmermann, R.S.. (2025). LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:35136-35167 Available from https://proceedings.mlr.press/v267/li25aw.html.

Related Material