[edit]
Geometry Informed Tokenization of Molecules for Language Model Generation
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:36096-36128, 2025.
Abstract
We consider molecule generation in 3D space using language models (LMs), which requires discrete tokenization of 3D molecular geometries. Although tokenization of molecular graphs exists, that for 3D geometries is largely unexplored. Here, we attempt to bridge this gap by proposing a novel method which converts molecular geometries into SE(3)-invariant 1D discrete sequences. Our method consists of canonical labeling and invariant spherical representation steps, which together maintain geometric and atomic fidelity in a format conducive to LMs. Our experiments show that, when coupled with our proposed method, various LMs excel in molecular geometry generation, especially in controlled generation tasks. Our code has been released as part of the AIRS library (https://github.com/divelab/AIRS/).