Accurate Identification of Communication Between Multiple Interacting Neural Populations

Belle Liu, Jacob Sacks, Matthew D. Golub
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:39381-39404, 2025.

Abstract

Neural recording technologies now enable simultaneous recording of population activity across multiple brain regions, motivating the development of data-driven models of communication between recorded brain regions. Existing models can struggle to disentangle communication from the effects of unrecorded regions and local neural population dynamics. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder composed of region-specific recurrent networks. MR-LFADS features structured information bottlenecks, data-constrained communication, and unsupervised inference of unobserved inputs–features that specifically support disentangling of inter-regional communication, inputs from unobserved regions, and local population dynamics. MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. Applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were not seen during model fitting. These validations on synthetic and real neural data suggest that MR-LFADS could serve as a powerful tool for uncovering the principles of brain-wide information processing.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-liu25bh, title = {Accurate Identification of Communication Between Multiple Interacting Neural Populations}, author = {Liu, Belle and Sacks, Jacob and Golub, Matthew D.}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {39381--39404}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/liu25bh/liu25bh.pdf}, url = {https://proceedings.mlr.press/v267/liu25bh.html}, abstract = {Neural recording technologies now enable simultaneous recording of population activity across multiple brain regions, motivating the development of data-driven models of communication between recorded brain regions. Existing models can struggle to disentangle communication from the effects of unrecorded regions and local neural population dynamics. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder composed of region-specific recurrent networks. MR-LFADS features structured information bottlenecks, data-constrained communication, and unsupervised inference of unobserved inputs–features that specifically support disentangling of inter-regional communication, inputs from unobserved regions, and local population dynamics. MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. Applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were not seen during model fitting. These validations on synthetic and real neural data suggest that MR-LFADS could serve as a powerful tool for uncovering the principles of brain-wide information processing.} }
Endnote
%0 Conference Paper %T Accurate Identification of Communication Between Multiple Interacting Neural Populations %A Belle Liu %A Jacob Sacks %A Matthew D. Golub %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-liu25bh %I PMLR %P 39381--39404 %U https://proceedings.mlr.press/v267/liu25bh.html %V 267 %X Neural recording technologies now enable simultaneous recording of population activity across multiple brain regions, motivating the development of data-driven models of communication between recorded brain regions. Existing models can struggle to disentangle communication from the effects of unrecorded regions and local neural population dynamics. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder composed of region-specific recurrent networks. MR-LFADS features structured information bottlenecks, data-constrained communication, and unsupervised inference of unobserved inputs–features that specifically support disentangling of inter-regional communication, inputs from unobserved regions, and local population dynamics. MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. Applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were not seen during model fitting. These validations on synthetic and real neural data suggest that MR-LFADS could serve as a powerful tool for uncovering the principles of brain-wide information processing.
APA
Liu, B., Sacks, J. & Golub, M.D.. (2025). Accurate Identification of Communication Between Multiple Interacting Neural Populations. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:39381-39404 Available from https://proceedings.mlr.press/v267/liu25bh.html.

Related Material