Efficient ANN-SNN Conversion with Error Compensation Learning

Chang Liu, Jiangrong Shen, Xuming Ran, Mingkun Xu, Qi Xu, Yi Xu, Gang Pan
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:39482-39495, 2025.

Abstract

Artificial neural networks (ANNs) have demonstrated outstanding performance in numerous tasks, but deployment in resource-constrained environments remains a challenge due to their high computational and memory requirements. Spiking neural networks (SNNs) operate through discrete spike events and offer superior energy efficiency, providing a bio-inspired alternative. However, current ANN-to-SNN conversion often results in significant accuracy loss and increased inference time due to conversion errors such as clipping, quantization, and uneven activation. This paper proposes a novel ANN-to-SNN conversion framework based on error compensation learning. We introduce a learnable threshold clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy to mitigate the conversion error. Together, these techniques address the clipping error through adaptive thresholds, dynamically reduce the quantization error through dual-threshold neurons, and minimize the non-uniformity error by effectively managing the membrane potential. Experimental results on CIFAR-10, CIFAR-100, ImageNet datasets show that our method achieves high-precision and ultra-low latency among existing conversion methods. Using only two time steps, our method significantly reduces the inference time while maintains competitive accuracy of 94.75% on CIFAR-10 dataset under ResNet-18 structure. This research promotes the practical application of SNNs on low-power hardware, making efficient real-time processing possible.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-liu25bl, title = {Efficient {ANN}-{SNN} Conversion with Error Compensation Learning}, author = {Liu, Chang and Shen, Jiangrong and Ran, Xuming and Xu, Mingkun and Xu, Qi and Xu, Yi and Pan, Gang}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {39482--39495}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/liu25bl/liu25bl.pdf}, url = {https://proceedings.mlr.press/v267/liu25bl.html}, abstract = {Artificial neural networks (ANNs) have demonstrated outstanding performance in numerous tasks, but deployment in resource-constrained environments remains a challenge due to their high computational and memory requirements. Spiking neural networks (SNNs) operate through discrete spike events and offer superior energy efficiency, providing a bio-inspired alternative. However, current ANN-to-SNN conversion often results in significant accuracy loss and increased inference time due to conversion errors such as clipping, quantization, and uneven activation. This paper proposes a novel ANN-to-SNN conversion framework based on error compensation learning. We introduce a learnable threshold clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy to mitigate the conversion error. Together, these techniques address the clipping error through adaptive thresholds, dynamically reduce the quantization error through dual-threshold neurons, and minimize the non-uniformity error by effectively managing the membrane potential. Experimental results on CIFAR-10, CIFAR-100, ImageNet datasets show that our method achieves high-precision and ultra-low latency among existing conversion methods. Using only two time steps, our method significantly reduces the inference time while maintains competitive accuracy of 94.75% on CIFAR-10 dataset under ResNet-18 structure. This research promotes the practical application of SNNs on low-power hardware, making efficient real-time processing possible.} }
Endnote
%0 Conference Paper %T Efficient ANN-SNN Conversion with Error Compensation Learning %A Chang Liu %A Jiangrong Shen %A Xuming Ran %A Mingkun Xu %A Qi Xu %A Yi Xu %A Gang Pan %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-liu25bl %I PMLR %P 39482--39495 %U https://proceedings.mlr.press/v267/liu25bl.html %V 267 %X Artificial neural networks (ANNs) have demonstrated outstanding performance in numerous tasks, but deployment in resource-constrained environments remains a challenge due to their high computational and memory requirements. Spiking neural networks (SNNs) operate through discrete spike events and offer superior energy efficiency, providing a bio-inspired alternative. However, current ANN-to-SNN conversion often results in significant accuracy loss and increased inference time due to conversion errors such as clipping, quantization, and uneven activation. This paper proposes a novel ANN-to-SNN conversion framework based on error compensation learning. We introduce a learnable threshold clipping function, dual-threshold neurons, and an optimized membrane potential initialization strategy to mitigate the conversion error. Together, these techniques address the clipping error through adaptive thresholds, dynamically reduce the quantization error through dual-threshold neurons, and minimize the non-uniformity error by effectively managing the membrane potential. Experimental results on CIFAR-10, CIFAR-100, ImageNet datasets show that our method achieves high-precision and ultra-low latency among existing conversion methods. Using only two time steps, our method significantly reduces the inference time while maintains competitive accuracy of 94.75% on CIFAR-10 dataset under ResNet-18 structure. This research promotes the practical application of SNNs on low-power hardware, making efficient real-time processing possible.
APA
Liu, C., Shen, J., Ran, X., Xu, M., Xu, Q., Xu, Y. & Pan, G.. (2025). Efficient ANN-SNN Conversion with Error Compensation Learning. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:39482-39495 Available from https://proceedings.mlr.press/v267/liu25bl.html.

Related Material