Censor Dependent Variational Inference

Chuanhui Liu, Xiao Wang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:39669-39693, 2025.

Abstract

This paper provides a comprehensive analysis of variational inference in latent variable models for survival analysis, emphasizing the distinctive challenges associated with applying variational methods to survival data. We identify a critical weakness in the existing methodology, demonstrating how a poorly designed variational distribution may hinder the objective of survival analysis tasks—modeling time-to-event distributions. We prove that the optimal variational distribution, which perfectly bounds the log-likelihood, may depend on the censoring mechanism. To address this issue, we propose censor-dependent variational inference (CDVI), tailored for latent variable models in survival analysis. More practically, we introduce CD-CVAE, a V-structure Variational Autoencoder (VAE) designed for the scalable implementation of CDVI. Further discussion extends some existing theories and training techniques to survival analysis. Extensive experiments validate our analysis and demonstrate significant improvements in the estimation of individual survival distributions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-liu25bt, title = {Censor Dependent Variational Inference}, author = {Liu, Chuanhui and Wang, Xiao}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {39669--39693}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/liu25bt/liu25bt.pdf}, url = {https://proceedings.mlr.press/v267/liu25bt.html}, abstract = {This paper provides a comprehensive analysis of variational inference in latent variable models for survival analysis, emphasizing the distinctive challenges associated with applying variational methods to survival data. We identify a critical weakness in the existing methodology, demonstrating how a poorly designed variational distribution may hinder the objective of survival analysis tasks—modeling time-to-event distributions. We prove that the optimal variational distribution, which perfectly bounds the log-likelihood, may depend on the censoring mechanism. To address this issue, we propose censor-dependent variational inference (CDVI), tailored for latent variable models in survival analysis. More practically, we introduce CD-CVAE, a V-structure Variational Autoencoder (VAE) designed for the scalable implementation of CDVI. Further discussion extends some existing theories and training techniques to survival analysis. Extensive experiments validate our analysis and demonstrate significant improvements in the estimation of individual survival distributions.} }
Endnote
%0 Conference Paper %T Censor Dependent Variational Inference %A Chuanhui Liu %A Xiao Wang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-liu25bt %I PMLR %P 39669--39693 %U https://proceedings.mlr.press/v267/liu25bt.html %V 267 %X This paper provides a comprehensive analysis of variational inference in latent variable models for survival analysis, emphasizing the distinctive challenges associated with applying variational methods to survival data. We identify a critical weakness in the existing methodology, demonstrating how a poorly designed variational distribution may hinder the objective of survival analysis tasks—modeling time-to-event distributions. We prove that the optimal variational distribution, which perfectly bounds the log-likelihood, may depend on the censoring mechanism. To address this issue, we propose censor-dependent variational inference (CDVI), tailored for latent variable models in survival analysis. More practically, we introduce CD-CVAE, a V-structure Variational Autoencoder (VAE) designed for the scalable implementation of CDVI. Further discussion extends some existing theories and training techniques to survival analysis. Extensive experiments validate our analysis and demonstrate significant improvements in the estimation of individual survival distributions.
APA
Liu, C. & Wang, X.. (2025). Censor Dependent Variational Inference. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:39669-39693 Available from https://proceedings.mlr.press/v267/liu25bt.html.

Related Material