Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation

Renhao Lu
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:40452-40463, 2025.

Abstract

Recent advancements in deep neural networks have significantly enhanced the performance of semantic segmentation. However, class imbalance and instance imbalance remain persistent challenges, where smaller instances and thin boundaries are often overshadowed by larger structures. To address the multiscale nature of segmented objects, various models have incorporated mechanisms such as spatial attention and feature pyramid networks. Despite these advancements, most loss functions are still primarily pixel-wise, while regional and boundary-focused loss functions often incur high computational costs or are restricted to small-scale regions. To address this limitation, we propose the complex wavelet mutual information (CWMI) loss, a novel loss function that leverages mutual information from subband images decomposed by a complex steerable pyramid. The complex steerable pyramid captures features across multiple orientations and preserves structural similarity across scales. Meanwhile, mutual information is well-suited to capturing high-dimensional directional features and offers greater noise robustness. Extensive experiments on diverse segmentation datasets demonstrate that CWMI loss achieves significant improvements in both pixel-wise accuracy and topological metrics compared to state-of-the-art methods, while introducing minimal computational overhead. Our code is available at https://github.com/lurenhaothu/CWMI

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-lu25c, title = {Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation}, author = {Lu, Renhao}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {40452--40463}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/lu25c/lu25c.pdf}, url = {https://proceedings.mlr.press/v267/lu25c.html}, abstract = {Recent advancements in deep neural networks have significantly enhanced the performance of semantic segmentation. However, class imbalance and instance imbalance remain persistent challenges, where smaller instances and thin boundaries are often overshadowed by larger structures. To address the multiscale nature of segmented objects, various models have incorporated mechanisms such as spatial attention and feature pyramid networks. Despite these advancements, most loss functions are still primarily pixel-wise, while regional and boundary-focused loss functions often incur high computational costs or are restricted to small-scale regions. To address this limitation, we propose the complex wavelet mutual information (CWMI) loss, a novel loss function that leverages mutual information from subband images decomposed by a complex steerable pyramid. The complex steerable pyramid captures features across multiple orientations and preserves structural similarity across scales. Meanwhile, mutual information is well-suited to capturing high-dimensional directional features and offers greater noise robustness. Extensive experiments on diverse segmentation datasets demonstrate that CWMI loss achieves significant improvements in both pixel-wise accuracy and topological metrics compared to state-of-the-art methods, while introducing minimal computational overhead. Our code is available at https://github.com/lurenhaothu/CWMI} }
Endnote
%0 Conference Paper %T Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation %A Renhao Lu %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-lu25c %I PMLR %P 40452--40463 %U https://proceedings.mlr.press/v267/lu25c.html %V 267 %X Recent advancements in deep neural networks have significantly enhanced the performance of semantic segmentation. However, class imbalance and instance imbalance remain persistent challenges, where smaller instances and thin boundaries are often overshadowed by larger structures. To address the multiscale nature of segmented objects, various models have incorporated mechanisms such as spatial attention and feature pyramid networks. Despite these advancements, most loss functions are still primarily pixel-wise, while regional and boundary-focused loss functions often incur high computational costs or are restricted to small-scale regions. To address this limitation, we propose the complex wavelet mutual information (CWMI) loss, a novel loss function that leverages mutual information from subband images decomposed by a complex steerable pyramid. The complex steerable pyramid captures features across multiple orientations and preserves structural similarity across scales. Meanwhile, mutual information is well-suited to capturing high-dimensional directional features and offers greater noise robustness. Extensive experiments on diverse segmentation datasets demonstrate that CWMI loss achieves significant improvements in both pixel-wise accuracy and topological metrics compared to state-of-the-art methods, while introducing minimal computational overhead. Our code is available at https://github.com/lurenhaothu/CWMI
APA
Lu, R.. (2025). Complex Wavelet Mutual Information Loss: A Multi-Scale Loss Function for Semantic Segmentation. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:40452-40463 Available from https://proceedings.mlr.press/v267/lu25c.html.

Related Material