WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting

Jiecheng Lu, Xu Han, Yan Sun, Shihao Yang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:40464-40490, 2025.

Abstract

We propose a Weighted Autoregressive Varying gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-lu25d, title = {{WAVE}: Weighted Autoregressive Varying Gate for Time Series Forecasting}, author = {Lu, Jiecheng and Han, Xu and Sun, Yan and Yang, Shihao}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {40464--40490}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/lu25d/lu25d.pdf}, url = {https://proceedings.mlr.press/v267/lu25d.html}, abstract = {We propose a Weighted Autoregressive Varying gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.} }
Endnote
%0 Conference Paper %T WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting %A Jiecheng Lu %A Xu Han %A Yan Sun %A Shihao Yang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-lu25d %I PMLR %P 40464--40490 %U https://proceedings.mlr.press/v267/lu25d.html %V 267 %X We propose a Weighted Autoregressive Varying gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.
APA
Lu, J., Han, X., Sun, Y. & Yang, S.. (2025). WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:40464-40490 Available from https://proceedings.mlr.press/v267/lu25d.html.

Related Material