System-Aware Unlearning Algorithms: Use Lesser, Forget Faster

Linda Lu, Ayush Sekhari, Karthik Sridharan
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:40560-40592, 2025.

Abstract

Machine unlearning addresses the problem of updating a machine learning model/system trained on a dataset $S$ so that the influence of a set of deletion requests $U \subseteq S$ on the unlearned model is minimized. The gold standard definition of unlearning demands that the updated model, after deletion, be nearly identical to the model obtained by retraining. This definition is designed for a worst-case attacker (one who can recover not only the unlearned model but also the remaining data samples, i.e., $S \setminus U$). Such a stringent definition has made developing efficient unlearning algorithms challenging. However, such strong attackers are also unrealistic. In this work, we propose a new definition, system-aware unlearning, which aims to provide unlearning guarantees against an attacker that can at best only gain access to the data stored in the system for learning/unlearning requests and not all of $S\setminus U$. With this new definition, we use the simple intuition that if a system can store less to make its learning/unlearning updates, it can be more secure and update more efficiently against a system-aware attacker. Towards that end, we present an exact system-aware unlearning algorithm for linear classification using a selective sampling-based approach, and we generalize the method for classification with general function classes. We theoretically analyze the tradeoffs between deletion capacity, accuracy, memory, and computation time.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-lu25h, title = {System-Aware Unlearning Algorithms: Use Lesser, Forget Faster}, author = {Lu, Linda and Sekhari, Ayush and Sridharan, Karthik}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {40560--40592}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/lu25h/lu25h.pdf}, url = {https://proceedings.mlr.press/v267/lu25h.html}, abstract = {Machine unlearning addresses the problem of updating a machine learning model/system trained on a dataset $S$ so that the influence of a set of deletion requests $U \subseteq S$ on the unlearned model is minimized. The gold standard definition of unlearning demands that the updated model, after deletion, be nearly identical to the model obtained by retraining. This definition is designed for a worst-case attacker (one who can recover not only the unlearned model but also the remaining data samples, i.e., $S \setminus U$). Such a stringent definition has made developing efficient unlearning algorithms challenging. However, such strong attackers are also unrealistic. In this work, we propose a new definition, system-aware unlearning, which aims to provide unlearning guarantees against an attacker that can at best only gain access to the data stored in the system for learning/unlearning requests and not all of $S\setminus U$. With this new definition, we use the simple intuition that if a system can store less to make its learning/unlearning updates, it can be more secure and update more efficiently against a system-aware attacker. Towards that end, we present an exact system-aware unlearning algorithm for linear classification using a selective sampling-based approach, and we generalize the method for classification with general function classes. We theoretically analyze the tradeoffs between deletion capacity, accuracy, memory, and computation time.} }
Endnote
%0 Conference Paper %T System-Aware Unlearning Algorithms: Use Lesser, Forget Faster %A Linda Lu %A Ayush Sekhari %A Karthik Sridharan %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-lu25h %I PMLR %P 40560--40592 %U https://proceedings.mlr.press/v267/lu25h.html %V 267 %X Machine unlearning addresses the problem of updating a machine learning model/system trained on a dataset $S$ so that the influence of a set of deletion requests $U \subseteq S$ on the unlearned model is minimized. The gold standard definition of unlearning demands that the updated model, after deletion, be nearly identical to the model obtained by retraining. This definition is designed for a worst-case attacker (one who can recover not only the unlearned model but also the remaining data samples, i.e., $S \setminus U$). Such a stringent definition has made developing efficient unlearning algorithms challenging. However, such strong attackers are also unrealistic. In this work, we propose a new definition, system-aware unlearning, which aims to provide unlearning guarantees against an attacker that can at best only gain access to the data stored in the system for learning/unlearning requests and not all of $S\setminus U$. With this new definition, we use the simple intuition that if a system can store less to make its learning/unlearning updates, it can be more secure and update more efficiently against a system-aware attacker. Towards that end, we present an exact system-aware unlearning algorithm for linear classification using a selective sampling-based approach, and we generalize the method for classification with general function classes. We theoretically analyze the tradeoffs between deletion capacity, accuracy, memory, and computation time.
APA
Lu, L., Sekhari, A. & Sridharan, K.. (2025). System-Aware Unlearning Algorithms: Use Lesser, Forget Faster. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:40560-40592 Available from https://proceedings.mlr.press/v267/lu25h.html.

Related Material