[edit]
Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:45236-45255, 2025.
Abstract
We demonstrate how neural networks can drive mathematical discovery through a case study of the Hadwiger-Nelson problem, a long-standing open problem at the intersection of discrete geometry and extremal combinatorics that is concerned with coloring the plane while avoiding monochromatic unit-distance pairs. Using neural networks as approximators, we reformulate this mixed discrete-continuous geometric coloring problem with hard constraints as an optimization task with a probabilistic, differentiable loss function. This enables gradient-based exploration of admissible configurations that most significantly led to the discovery of two novel six-colorings, providing the first improvement in thirty years to the off-diagonal variant of the original problem (Mundinger et al., 2024a). Here, we establish the underlying machine learning approach used to obtain these results and demonstrate its broader applicability through additional numerical insights.