Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity

Quan M. Nguyen, Nishant A Mehta, Cristóbal A Guzmán
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:46073-46115, 2025.

Abstract

The minimax sample complexity of group distributionally robust optimization (GDRO) has been determined up to a $\log(K)$ factor, where $K$ is the number of groups. In this work, we venture beyond the minimax perspective via a novel notion of sparsity that we call $(\lambda, \beta)$-sparsity. In short, this condition means that at any parameter $\theta$, there is a set of at most $\beta$ groups whose risks at $\theta$ are all at least $\lambda$ larger than the risks of the other groups. To find an $\epsilon$-optimal $\theta$, we show via a novel algorithm and analysis that the $\epsilon$-dependent term in the sample complexity can swap a linear dependence on $K$ for a linear dependence on the potentially much smaller $\beta$. This improvement leverages recent progress in sleeping bandits, showing a fundamental connection between the two-player zero-sum game optimization framework for GDRO and per-action regret bounds in sleeping bandits. We next show an adaptive algorithm which, up to logarithmic factors, obtains a sample complexity bound that adapts to the best $(\lambda, \beta)$-sparsity condition that holds. We also show how to obtain a dimension-free semi-adaptive sample complexity bound with a computationally efficient method. Finally, we demonstrate the practicality of the $(\lambda, \beta)$-sparsity condition and the improved sample efficiency of our algorithms on both synthetic and real-life datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-nguyen25e, title = {Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity}, author = {Nguyen, Quan M. and Mehta, Nishant A and Guzm\'{a}n, Crist\'{o}bal A}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {46073--46115}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/nguyen25e/nguyen25e.pdf}, url = {https://proceedings.mlr.press/v267/nguyen25e.html}, abstract = {The minimax sample complexity of group distributionally robust optimization (GDRO) has been determined up to a $\log(K)$ factor, where $K$ is the number of groups. In this work, we venture beyond the minimax perspective via a novel notion of sparsity that we call $(\lambda, \beta)$-sparsity. In short, this condition means that at any parameter $\theta$, there is a set of at most $\beta$ groups whose risks at $\theta$ are all at least $\lambda$ larger than the risks of the other groups. To find an $\epsilon$-optimal $\theta$, we show via a novel algorithm and analysis that the $\epsilon$-dependent term in the sample complexity can swap a linear dependence on $K$ for a linear dependence on the potentially much smaller $\beta$. This improvement leverages recent progress in sleeping bandits, showing a fundamental connection between the two-player zero-sum game optimization framework for GDRO and per-action regret bounds in sleeping bandits. We next show an adaptive algorithm which, up to logarithmic factors, obtains a sample complexity bound that adapts to the best $(\lambda, \beta)$-sparsity condition that holds. We also show how to obtain a dimension-free semi-adaptive sample complexity bound with a computationally efficient method. Finally, we demonstrate the practicality of the $(\lambda, \beta)$-sparsity condition and the improved sample efficiency of our algorithms on both synthetic and real-life datasets.} }
Endnote
%0 Conference Paper %T Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity %A Quan M. Nguyen %A Nishant A Mehta %A Cristóbal A Guzmán %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-nguyen25e %I PMLR %P 46073--46115 %U https://proceedings.mlr.press/v267/nguyen25e.html %V 267 %X The minimax sample complexity of group distributionally robust optimization (GDRO) has been determined up to a $\log(K)$ factor, where $K$ is the number of groups. In this work, we venture beyond the minimax perspective via a novel notion of sparsity that we call $(\lambda, \beta)$-sparsity. In short, this condition means that at any parameter $\theta$, there is a set of at most $\beta$ groups whose risks at $\theta$ are all at least $\lambda$ larger than the risks of the other groups. To find an $\epsilon$-optimal $\theta$, we show via a novel algorithm and analysis that the $\epsilon$-dependent term in the sample complexity can swap a linear dependence on $K$ for a linear dependence on the potentially much smaller $\beta$. This improvement leverages recent progress in sleeping bandits, showing a fundamental connection between the two-player zero-sum game optimization framework for GDRO and per-action regret bounds in sleeping bandits. We next show an adaptive algorithm which, up to logarithmic factors, obtains a sample complexity bound that adapts to the best $(\lambda, \beta)$-sparsity condition that holds. We also show how to obtain a dimension-free semi-adaptive sample complexity bound with a computationally efficient method. Finally, we demonstrate the practicality of the $(\lambda, \beta)$-sparsity condition and the improved sample efficiency of our algorithms on both synthetic and real-life datasets.
APA
Nguyen, Q.M., Mehta, N.A. & Guzmán, C.A.. (2025). Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:46073-46115 Available from https://proceedings.mlr.press/v267/nguyen25e.html.

Related Material