Lean and Mean Adaptive Optimization via Subset-Norm and Subspace-Momentum with Convergence Guarantees

Thien Hang Nguyen, Huy Nguyen
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:46116-46161, 2025.

Abstract

We introduce two complementary techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) through step-size sharing. Subset-Norm (SN) reduces AdaGrad’s memory footprint from $O(d)$ to $O(\sqrt{d})$, where $d$ is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian noise, we show a noise-adapted high-probability convergence guarantee with improved dimensional dependence of SN over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state’s memory footprint by restricting momentum to a low-dimensional subspace while performing SGD in the orthogonal complement. We prove high-probability convergence rates for Subspace-Momentum under standard assumptions. Empirical evaluation on pre-training and fine-tuning LLMs demonstrates the effectiveness of our methods. For instance, combining Subset-Norm with Subspace-Momentum achieves Adam’s validation perplexity for LLaMA 1B in approximately half the training tokens (6.8B vs 13.1B) while reducing Adam’s optimizer-states memory footprint by more than 80% with minimal additional hyperparameter tuning.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-nguyen25f, title = {Lean and Mean Adaptive Optimization via Subset-Norm and Subspace-Momentum with Convergence Guarantees}, author = {Nguyen, Thien Hang and Nguyen, Huy}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {46116--46161}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/nguyen25f/nguyen25f.pdf}, url = {https://proceedings.mlr.press/v267/nguyen25f.html}, abstract = {We introduce two complementary techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) through step-size sharing. Subset-Norm (SN) reduces AdaGrad’s memory footprint from $O(d)$ to $O(\sqrt{d})$, where $d$ is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian noise, we show a noise-adapted high-probability convergence guarantee with improved dimensional dependence of SN over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state’s memory footprint by restricting momentum to a low-dimensional subspace while performing SGD in the orthogonal complement. We prove high-probability convergence rates for Subspace-Momentum under standard assumptions. Empirical evaluation on pre-training and fine-tuning LLMs demonstrates the effectiveness of our methods. For instance, combining Subset-Norm with Subspace-Momentum achieves Adam’s validation perplexity for LLaMA 1B in approximately half the training tokens (6.8B vs 13.1B) while reducing Adam’s optimizer-states memory footprint by more than 80% with minimal additional hyperparameter tuning.} }
Endnote
%0 Conference Paper %T Lean and Mean Adaptive Optimization via Subset-Norm and Subspace-Momentum with Convergence Guarantees %A Thien Hang Nguyen %A Huy Nguyen %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-nguyen25f %I PMLR %P 46116--46161 %U https://proceedings.mlr.press/v267/nguyen25f.html %V 267 %X We introduce two complementary techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) through step-size sharing. Subset-Norm (SN) reduces AdaGrad’s memory footprint from $O(d)$ to $O(\sqrt{d})$, where $d$ is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian noise, we show a noise-adapted high-probability convergence guarantee with improved dimensional dependence of SN over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state’s memory footprint by restricting momentum to a low-dimensional subspace while performing SGD in the orthogonal complement. We prove high-probability convergence rates for Subspace-Momentum under standard assumptions. Empirical evaluation on pre-training and fine-tuning LLMs demonstrates the effectiveness of our methods. For instance, combining Subset-Norm with Subspace-Momentum achieves Adam’s validation perplexity for LLaMA 1B in approximately half the training tokens (6.8B vs 13.1B) while reducing Adam’s optimizer-states memory footprint by more than 80% with minimal additional hyperparameter tuning.
APA
Nguyen, T.H. & Nguyen, H.. (2025). Lean and Mean Adaptive Optimization via Subset-Norm and Subspace-Momentum with Convergence Guarantees. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:46116-46161 Available from https://proceedings.mlr.press/v267/nguyen25f.html.

Related Material