DiffAdvMAP: Flexible Diffusion-Based Framework for Generating Natural Unrestricted Adversarial Examples

Zhengzhao Pan, Hua Chen, Xiaogang Zhang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:47590-47614, 2025.

Abstract

Unrestricted adversarial examples(UAEs) have posed greater threats to deep neural networks(DNNs) than perturbation-based adversarial examples(AEs) because they can make extensive changes to images without being restricted in a fixed norm perturbation budget. Although current diffusion-based methods can generate more natural UAEs than other unrestricted attack methods, the overall effectiveness of such methods is restricted since they are designed for specific attack conditions. Additionally, the naturalness of UAEs still has room for improvement, as these methods primarily focus on leveraging diffusion models as strong priors to enhance the generation process. This paper proposes a flexible framework named Diffusion-based Adversarial Maximum a Posterior(DiffAdvMAP) to generate more natural UAEs for various scenarios. DiffAdvMAP approaches the generation of UAEs by sampling images from posterior distributions, which is achieved by approximating the posterior distribution of UAEs using the prior distribution of real data learned by the diffusion model. This process enhances the naturalness of the UAEs. By incorporating an adversarial constraint to ensure the effectiveness of the attack, DiffAdvMAP exhibits excellent attack ability and defense robustness. A reconstruction constraint is designed to enhance its flexibility, which allows DiffAdvMAP to be tailored to various attack scenarios. Experimental results on Imagenet show that we achieve a better trade-off between image quality, flexibility, and transferability than baseline unrestricted adversarial attack methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-pan25b, title = {{D}iff{A}dv{MAP}: Flexible Diffusion-Based Framework for Generating Natural Unrestricted Adversarial Examples}, author = {Pan, Zhengzhao and Chen, Hua and Zhang, Xiaogang}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {47590--47614}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/pan25b/pan25b.pdf}, url = {https://proceedings.mlr.press/v267/pan25b.html}, abstract = {Unrestricted adversarial examples(UAEs) have posed greater threats to deep neural networks(DNNs) than perturbation-based adversarial examples(AEs) because they can make extensive changes to images without being restricted in a fixed norm perturbation budget. Although current diffusion-based methods can generate more natural UAEs than other unrestricted attack methods, the overall effectiveness of such methods is restricted since they are designed for specific attack conditions. Additionally, the naturalness of UAEs still has room for improvement, as these methods primarily focus on leveraging diffusion models as strong priors to enhance the generation process. This paper proposes a flexible framework named Diffusion-based Adversarial Maximum a Posterior(DiffAdvMAP) to generate more natural UAEs for various scenarios. DiffAdvMAP approaches the generation of UAEs by sampling images from posterior distributions, which is achieved by approximating the posterior distribution of UAEs using the prior distribution of real data learned by the diffusion model. This process enhances the naturalness of the UAEs. By incorporating an adversarial constraint to ensure the effectiveness of the attack, DiffAdvMAP exhibits excellent attack ability and defense robustness. A reconstruction constraint is designed to enhance its flexibility, which allows DiffAdvMAP to be tailored to various attack scenarios. Experimental results on Imagenet show that we achieve a better trade-off between image quality, flexibility, and transferability than baseline unrestricted adversarial attack methods.} }
Endnote
%0 Conference Paper %T DiffAdvMAP: Flexible Diffusion-Based Framework for Generating Natural Unrestricted Adversarial Examples %A Zhengzhao Pan %A Hua Chen %A Xiaogang Zhang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-pan25b %I PMLR %P 47590--47614 %U https://proceedings.mlr.press/v267/pan25b.html %V 267 %X Unrestricted adversarial examples(UAEs) have posed greater threats to deep neural networks(DNNs) than perturbation-based adversarial examples(AEs) because they can make extensive changes to images without being restricted in a fixed norm perturbation budget. Although current diffusion-based methods can generate more natural UAEs than other unrestricted attack methods, the overall effectiveness of such methods is restricted since they are designed for specific attack conditions. Additionally, the naturalness of UAEs still has room for improvement, as these methods primarily focus on leveraging diffusion models as strong priors to enhance the generation process. This paper proposes a flexible framework named Diffusion-based Adversarial Maximum a Posterior(DiffAdvMAP) to generate more natural UAEs for various scenarios. DiffAdvMAP approaches the generation of UAEs by sampling images from posterior distributions, which is achieved by approximating the posterior distribution of UAEs using the prior distribution of real data learned by the diffusion model. This process enhances the naturalness of the UAEs. By incorporating an adversarial constraint to ensure the effectiveness of the attack, DiffAdvMAP exhibits excellent attack ability and defense robustness. A reconstruction constraint is designed to enhance its flexibility, which allows DiffAdvMAP to be tailored to various attack scenarios. Experimental results on Imagenet show that we achieve a better trade-off between image quality, flexibility, and transferability than baseline unrestricted adversarial attack methods.
APA
Pan, Z., Chen, H. & Zhang, X.. (2025). DiffAdvMAP: Flexible Diffusion-Based Framework for Generating Natural Unrestricted Adversarial Examples. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:47590-47614 Available from https://proceedings.mlr.press/v267/pan25b.html.

Related Material