[edit]
Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:48422-48438, 2025.
Abstract
With the rise in global greenhouse gas emissions, accurate large-scale tree canopy height maps are essential for understanding forest structure, estimating above-ground biomass, and monitoring ecological disruptions. To this end, we present a novel approach to generate large-scale, high-resolution canopy height maps over time. Our model accurately predicts canopy height over multiple years given Sentinel 2 time series satellite data. Using GEDI LiDAR data as the ground truth for training the model, we present the first 10 m resolution temporal canopy height map of the European continent for the period 2019–2022. As part of this product, we also offer a detailed canopy height map for 2020, providing more precise estimates than previous studies. Our pipeline and the resulting temporal height map are publicly available, enabling comprehensive large-scale monitoring of forests and, hence, facilitating future research and ecological analyses. For an interactive viewer, see https://europetreemap.projects.earthengine.app/view/europeheight.