Learning dynamics in linear recurrent neural networks

Alexandra Maria Proca, Clémentine Carla Juliette Dominé, Murray Shanahan, Pedro A. M. Mediano
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:49860-49902, 2025.

Abstract

Recurrent neural networks (RNNs) are powerful models used widely in both machine learning and neuroscience to learn tasks with temporal dependencies and to model neural dynamics. However, despite significant advancements in the theory of RNNs, there is still limited understanding of their learning process and the impact of the temporal structure of data. Here, we bridge this gap by analyzing the learning dynamics of linear RNNs (LRNNs) analytically, enabled by a novel framework that accounts for task dynamics. Our mathematical result reveals four key properties of LRNNs: (1) Learning of data singular values is ordered by both scale and temporal precedence, such that singular values that are larger and occur later are learned faster. (2) Task dynamics impact solution stability and extrapolation ability. (3) The loss function contains an effective regularization term that incentivizes small weights and mediates a tradeoff between recurrent and feedforward computation. (4) Recurrence encourages feature learning, as shown through a novel derivation of the neural tangent kernel for finite-width LRNNs. As a final proof-of-concept, we apply our theoretical framework to explain the behavior of LRNNs performing sensory integration tasks. Our work provides a first analytical treatment of the relationship between the temporal dependencies in tasks and learning dynamics in LRNNs, building a foundation for understanding how complex dynamic behavior emerges in cognitive models.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-proca25a, title = {Learning dynamics in linear recurrent neural networks}, author = {Proca, Alexandra Maria and Domin\'{e}, Cl\'{e}mentine Carla Juliette and Shanahan, Murray and Mediano, Pedro A. M.}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {49860--49902}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/proca25a/proca25a.pdf}, url = {https://proceedings.mlr.press/v267/proca25a.html}, abstract = {Recurrent neural networks (RNNs) are powerful models used widely in both machine learning and neuroscience to learn tasks with temporal dependencies and to model neural dynamics. However, despite significant advancements in the theory of RNNs, there is still limited understanding of their learning process and the impact of the temporal structure of data. Here, we bridge this gap by analyzing the learning dynamics of linear RNNs (LRNNs) analytically, enabled by a novel framework that accounts for task dynamics. Our mathematical result reveals four key properties of LRNNs: (1) Learning of data singular values is ordered by both scale and temporal precedence, such that singular values that are larger and occur later are learned faster. (2) Task dynamics impact solution stability and extrapolation ability. (3) The loss function contains an effective regularization term that incentivizes small weights and mediates a tradeoff between recurrent and feedforward computation. (4) Recurrence encourages feature learning, as shown through a novel derivation of the neural tangent kernel for finite-width LRNNs. As a final proof-of-concept, we apply our theoretical framework to explain the behavior of LRNNs performing sensory integration tasks. Our work provides a first analytical treatment of the relationship between the temporal dependencies in tasks and learning dynamics in LRNNs, building a foundation for understanding how complex dynamic behavior emerges in cognitive models.} }
Endnote
%0 Conference Paper %T Learning dynamics in linear recurrent neural networks %A Alexandra Maria Proca %A Clémentine Carla Juliette Dominé %A Murray Shanahan %A Pedro A. M. Mediano %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-proca25a %I PMLR %P 49860--49902 %U https://proceedings.mlr.press/v267/proca25a.html %V 267 %X Recurrent neural networks (RNNs) are powerful models used widely in both machine learning and neuroscience to learn tasks with temporal dependencies and to model neural dynamics. However, despite significant advancements in the theory of RNNs, there is still limited understanding of their learning process and the impact of the temporal structure of data. Here, we bridge this gap by analyzing the learning dynamics of linear RNNs (LRNNs) analytically, enabled by a novel framework that accounts for task dynamics. Our mathematical result reveals four key properties of LRNNs: (1) Learning of data singular values is ordered by both scale and temporal precedence, such that singular values that are larger and occur later are learned faster. (2) Task dynamics impact solution stability and extrapolation ability. (3) The loss function contains an effective regularization term that incentivizes small weights and mediates a tradeoff between recurrent and feedforward computation. (4) Recurrence encourages feature learning, as shown through a novel derivation of the neural tangent kernel for finite-width LRNNs. As a final proof-of-concept, we apply our theoretical framework to explain the behavior of LRNNs performing sensory integration tasks. Our work provides a first analytical treatment of the relationship between the temporal dependencies in tasks and learning dynamics in LRNNs, building a foundation for understanding how complex dynamic behavior emerges in cognitive models.
APA
Proca, A.M., Dominé, C.C.J., Shanahan, M. & Mediano, P.A.M.. (2025). Learning dynamics in linear recurrent neural networks. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:49860-49902 Available from https://proceedings.mlr.press/v267/proca25a.html.

Related Material