Empower Structure-Based Molecule Optimization with Gradient Guided Bayesian Flow Networks

Keyue Qiu, Yuxuan Song, Jie Yu, Hongbo Ma, Ziyao Cao, Zhilong Zhang, Yushuai Wu, Mingyue Zheng, Hao Zhou, Wei-Ying Ma
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:50645-50671, 2025.

Abstract

Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3%, Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x “Me-Better” Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility. Code is available at https://github.com/AlgoMole/MolCRAFT.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-qiu25h, title = {Empower Structure-Based Molecule Optimization with Gradient Guided {B}ayesian Flow Networks}, author = {Qiu, Keyue and Song, Yuxuan and Yu, Jie and Ma, Hongbo and Cao, Ziyao and Zhang, Zhilong and Wu, Yushuai and Zheng, Mingyue and Zhou, Hao and Ma, Wei-Ying}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {50645--50671}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/qiu25h/qiu25h.pdf}, url = {https://proceedings.mlr.press/v267/qiu25h.html}, abstract = {Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3%, Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x “Me-Better” Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility. Code is available at https://github.com/AlgoMole/MolCRAFT.} }
Endnote
%0 Conference Paper %T Empower Structure-Based Molecule Optimization with Gradient Guided Bayesian Flow Networks %A Keyue Qiu %A Yuxuan Song %A Jie Yu %A Hongbo Ma %A Ziyao Cao %A Zhilong Zhang %A Yushuai Wu %A Mingyue Zheng %A Hao Zhou %A Wei-Ying Ma %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-qiu25h %I PMLR %P 50645--50671 %U https://proceedings.mlr.press/v267/qiu25h.html %V 267 %X Structure-based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3%, Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x “Me-Better” Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility. Code is available at https://github.com/AlgoMole/MolCRAFT.
APA
Qiu, K., Song, Y., Yu, J., Ma, H., Cao, Z., Zhang, Z., Wu, Y., Zheng, M., Zhou, H. & Ma, W.. (2025). Empower Structure-Based Molecule Optimization with Gradient Guided Bayesian Flow Networks. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:50645-50671 Available from https://proceedings.mlr.press/v267/qiu25h.html.

Related Material