Generation from Noisy Examples

Ananth Raman, Vinod Raman
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:51079-51093, 2025.

Abstract

We continue to study the learning-theoretic foundations of generation by extending the results from Kleinberg and Mullainathan [2024] and Li et al. [2024] to account for noisy example streams. In the noiseless setting of Kleinberg and Mullainathan [2024] and Li et al. [2024], an adversary picks a hypothesis from a binary hypothesis class and provides a generator with a sequence of its positive examples. The goal of the generator is to eventually output new, unseen positive examples. In the noisy setting, an adversary still picks a hypothesis and a sequence of its positive examples. But, before presenting the stream to the generator, the adversary inserts a finite number of negative examples. Unaware of which examples are noisy, the goal of the generator is to still eventually output new, unseen positive examples. In this paper, we provide necessary and sufficient conditions for when a binary hypothesis class can be noisily generatable. We provide such conditions with respect to various constraints on the number of distinct examples that need to be seen before perfect generation of positive examples. Interestingly, for finite and countable classes we show that generatability is largely unaffected by the presence of a finite number of noisy examples.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-raman25a, title = {Generation from Noisy Examples}, author = {Raman, Ananth and Raman, Vinod}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {51079--51093}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/raman25a/raman25a.pdf}, url = {https://proceedings.mlr.press/v267/raman25a.html}, abstract = {We continue to study the learning-theoretic foundations of generation by extending the results from Kleinberg and Mullainathan [2024] and Li et al. [2024] to account for noisy example streams. In the noiseless setting of Kleinberg and Mullainathan [2024] and Li et al. [2024], an adversary picks a hypothesis from a binary hypothesis class and provides a generator with a sequence of its positive examples. The goal of the generator is to eventually output new, unseen positive examples. In the noisy setting, an adversary still picks a hypothesis and a sequence of its positive examples. But, before presenting the stream to the generator, the adversary inserts a finite number of negative examples. Unaware of which examples are noisy, the goal of the generator is to still eventually output new, unseen positive examples. In this paper, we provide necessary and sufficient conditions for when a binary hypothesis class can be noisily generatable. We provide such conditions with respect to various constraints on the number of distinct examples that need to be seen before perfect generation of positive examples. Interestingly, for finite and countable classes we show that generatability is largely unaffected by the presence of a finite number of noisy examples.} }
Endnote
%0 Conference Paper %T Generation from Noisy Examples %A Ananth Raman %A Vinod Raman %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-raman25a %I PMLR %P 51079--51093 %U https://proceedings.mlr.press/v267/raman25a.html %V 267 %X We continue to study the learning-theoretic foundations of generation by extending the results from Kleinberg and Mullainathan [2024] and Li et al. [2024] to account for noisy example streams. In the noiseless setting of Kleinberg and Mullainathan [2024] and Li et al. [2024], an adversary picks a hypothesis from a binary hypothesis class and provides a generator with a sequence of its positive examples. The goal of the generator is to eventually output new, unseen positive examples. In the noisy setting, an adversary still picks a hypothesis and a sequence of its positive examples. But, before presenting the stream to the generator, the adversary inserts a finite number of negative examples. Unaware of which examples are noisy, the goal of the generator is to still eventually output new, unseen positive examples. In this paper, we provide necessary and sufficient conditions for when a binary hypothesis class can be noisily generatable. We provide such conditions with respect to various constraints on the number of distinct examples that need to be seen before perfect generation of positive examples. Interestingly, for finite and countable classes we show that generatability is largely unaffected by the presence of a finite number of noisy examples.
APA
Raman, A. & Raman, V.. (2025). Generation from Noisy Examples. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:51079-51093 Available from https://proceedings.mlr.press/v267/raman25a.html.

Related Material