[edit]
Making Hard Problems Easier with Custom Data Distributions and Loss Regularization: A Case Study in Modular Arithmetic
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:53080-53094, 2025.
Abstract
Recent work showed that ML-based attacks on Learning with Errors (LWE), a hard problem used in post-quantum cryptography, outperform classical algebraic attacks in certain settings. Although promising, ML attacks struggle to scale to more complex LWE settings. Prior work connected this issue to the difficulty of training ML models to do modular arithmetic, a core feature of the LWE problem. To address this, we develop techniques that significantly boost the performance of ML models on modular arithmetic tasks—enabling the models to sum up to $N=128$ elements modulo $q \le 974269$. Our core innovation is the use of custom training data distributions and a carefully designed loss function that better represents the problem structure. We apply an initial proof of concept of our techniques to LWE specifically and find that they allow recovery of 2x harder secrets than prior work. Our techniques also help ML models learn other well-studied problems better, including copy, associative recall, and parity, motivating further study.