Tokenized Bandit for LLM Decoding and Alignment

Suho Shin, Chenghao Yang, Haifeng Xu, Mohammadtaghi Hajiaghayi
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:55255-55282, 2025.

Abstract

We introduce the tokenized linear bandit (TLB) and multi-armed bandit (TMAB), variants of linear and stochastic multi-armed bandit problems inspired by LLM decoding and alignment. In these problems, at each round $t \in [T]$, a user submits a query (context), and the decision maker (DM) sequentially selects a token irrevocably from a token set. Once the sequence is complete, the DM observes a random utility from the user, whose expectation is presented by a sequence function mapping the chosen token sequence to a nonnegative real value that depends on the query. In both problems, we first show that learning is impossible without any structure on the sequence function. We introduce a natural assumption, diminishing distance with more commons (DDMC), and propose algorithms with regret $\tilde{O}(L\sqrt{T})$ and $\tilde{O}(L\sqrt{T^{2/3}})$ for TLB and TMAB, respectively. As a side product, we obtain an (almost) optimality of the greedy decoding for LLM decoding algorithm under DDMC, which justifies the unresaonable effectiveness of greedy decoding in several tasks. This also has an immediate application to decoding-time LLM alignment, when the misaligned utility can be represented as the frozen LLM’s utility and a linearly realizable latent function. We finally validate our algorithm’s performance empirically as well as verify our assumptions using synthetic and real-world datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-shin25h, title = {Tokenized Bandit for {LLM} Decoding and Alignment}, author = {Shin, Suho and Yang, Chenghao and Xu, Haifeng and Hajiaghayi, Mohammadtaghi}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {55255--55282}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/shin25h/shin25h.pdf}, url = {https://proceedings.mlr.press/v267/shin25h.html}, abstract = {We introduce the tokenized linear bandit (TLB) and multi-armed bandit (TMAB), variants of linear and stochastic multi-armed bandit problems inspired by LLM decoding and alignment. In these problems, at each round $t \in [T]$, a user submits a query (context), and the decision maker (DM) sequentially selects a token irrevocably from a token set. Once the sequence is complete, the DM observes a random utility from the user, whose expectation is presented by a sequence function mapping the chosen token sequence to a nonnegative real value that depends on the query. In both problems, we first show that learning is impossible without any structure on the sequence function. We introduce a natural assumption, diminishing distance with more commons (DDMC), and propose algorithms with regret $\tilde{O}(L\sqrt{T})$ and $\tilde{O}(L\sqrt{T^{2/3}})$ for TLB and TMAB, respectively. As a side product, we obtain an (almost) optimality of the greedy decoding for LLM decoding algorithm under DDMC, which justifies the unresaonable effectiveness of greedy decoding in several tasks. This also has an immediate application to decoding-time LLM alignment, when the misaligned utility can be represented as the frozen LLM’s utility and a linearly realizable latent function. We finally validate our algorithm’s performance empirically as well as verify our assumptions using synthetic and real-world datasets.} }
Endnote
%0 Conference Paper %T Tokenized Bandit for LLM Decoding and Alignment %A Suho Shin %A Chenghao Yang %A Haifeng Xu %A Mohammadtaghi Hajiaghayi %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-shin25h %I PMLR %P 55255--55282 %U https://proceedings.mlr.press/v267/shin25h.html %V 267 %X We introduce the tokenized linear bandit (TLB) and multi-armed bandit (TMAB), variants of linear and stochastic multi-armed bandit problems inspired by LLM decoding and alignment. In these problems, at each round $t \in [T]$, a user submits a query (context), and the decision maker (DM) sequentially selects a token irrevocably from a token set. Once the sequence is complete, the DM observes a random utility from the user, whose expectation is presented by a sequence function mapping the chosen token sequence to a nonnegative real value that depends on the query. In both problems, we first show that learning is impossible without any structure on the sequence function. We introduce a natural assumption, diminishing distance with more commons (DDMC), and propose algorithms with regret $\tilde{O}(L\sqrt{T})$ and $\tilde{O}(L\sqrt{T^{2/3}})$ for TLB and TMAB, respectively. As a side product, we obtain an (almost) optimality of the greedy decoding for LLM decoding algorithm under DDMC, which justifies the unresaonable effectiveness of greedy decoding in several tasks. This also has an immediate application to decoding-time LLM alignment, when the misaligned utility can be represented as the frozen LLM’s utility and a linearly realizable latent function. We finally validate our algorithm’s performance empirically as well as verify our assumptions using synthetic and real-world datasets.
APA
Shin, S., Yang, C., Xu, H. & Hajiaghayi, M.. (2025). Tokenized Bandit for LLM Decoding and Alignment. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:55255-55282 Available from https://proceedings.mlr.press/v267/shin25h.html.

Related Material