Diversified Flow Matching with Translation Identifiability

Sagar Shrestha, Xiao Fu
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:55360-55378, 2025.

Abstract

Diversified distribution matching (DDM) finds a unified translation function mapping a diverse collection of conditional source distributions to their target counterparts. DDM was proposed to resolve content misalignment issues in unpaired domain translation, achieving translation identifiability. However, DDM has only been implemented using GANs due to its constraints on the translation function. GANs are often unstable to train and do not provide the transport trajectory information—yet such trajectories are useful in applications such as single-cell evolution analysis and robot route planning. This work introduces diversified flow matching (DFM), an ODE-based framework for DDM. Adapting flow matching (FM) to enforce a unified translation function as in DDM is challenging, as FM learns the translation function’s velocity rather than the translation function itself. A custom bilevel optimization-based training loss, a nonlinear interpolant, and a structural reformulation are proposed to address these challenges, offering a tangible implementation. To our knowledge, DFM is the first ODE-based approach guaranteeing translation identifiability. Experiments on synthetic and real-world datasets validate the proposed method.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-shrestha25a, title = {Diversified Flow Matching with Translation Identifiability}, author = {Shrestha, Sagar and Fu, Xiao}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {55360--55378}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/shrestha25a/shrestha25a.pdf}, url = {https://proceedings.mlr.press/v267/shrestha25a.html}, abstract = {Diversified distribution matching (DDM) finds a unified translation function mapping a diverse collection of conditional source distributions to their target counterparts. DDM was proposed to resolve content misalignment issues in unpaired domain translation, achieving translation identifiability. However, DDM has only been implemented using GANs due to its constraints on the translation function. GANs are often unstable to train and do not provide the transport trajectory information—yet such trajectories are useful in applications such as single-cell evolution analysis and robot route planning. This work introduces diversified flow matching (DFM), an ODE-based framework for DDM. Adapting flow matching (FM) to enforce a unified translation function as in DDM is challenging, as FM learns the translation function’s velocity rather than the translation function itself. A custom bilevel optimization-based training loss, a nonlinear interpolant, and a structural reformulation are proposed to address these challenges, offering a tangible implementation. To our knowledge, DFM is the first ODE-based approach guaranteeing translation identifiability. Experiments on synthetic and real-world datasets validate the proposed method.} }
Endnote
%0 Conference Paper %T Diversified Flow Matching with Translation Identifiability %A Sagar Shrestha %A Xiao Fu %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-shrestha25a %I PMLR %P 55360--55378 %U https://proceedings.mlr.press/v267/shrestha25a.html %V 267 %X Diversified distribution matching (DDM) finds a unified translation function mapping a diverse collection of conditional source distributions to their target counterparts. DDM was proposed to resolve content misalignment issues in unpaired domain translation, achieving translation identifiability. However, DDM has only been implemented using GANs due to its constraints on the translation function. GANs are often unstable to train and do not provide the transport trajectory information—yet such trajectories are useful in applications such as single-cell evolution analysis and robot route planning. This work introduces diversified flow matching (DFM), an ODE-based framework for DDM. Adapting flow matching (FM) to enforce a unified translation function as in DDM is challenging, as FM learns the translation function’s velocity rather than the translation function itself. A custom bilevel optimization-based training loss, a nonlinear interpolant, and a structural reformulation are proposed to address these challenges, offering a tangible implementation. To our knowledge, DFM is the first ODE-based approach guaranteeing translation identifiability. Experiments on synthetic and real-world datasets validate the proposed method.
APA
Shrestha, S. & Fu, X.. (2025). Diversified Flow Matching with Translation Identifiability. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:55360-55378 Available from https://proceedings.mlr.press/v267/shrestha25a.html.

Related Material