Private Model Personalization Revisited

Conor Snedeker, Xinyu Zhou, Raef Bassily
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:56018-56067, 2025.

Abstract

We study model personalization under user-level differential privacy (DP) in the shared representation framework. In this problem, there are $n$ users whose data is statistically heterogeneous, and their optimal parameters share an unknown embedding $U^* \in\mathbb{R}^{d\times k}$ that maps the user parameters in $\mathbb{R}^d$ to low-dimensional representations in $\mathbb{R}^k$, where $k\ll d$. Our goal is to privately recover the shared embedding and the local low-dimensional representations with small excess risk in the federated setting. We propose a private, efficient federated learning algorithm to learn the shared embedding based on the FedRep algorithm in (Collins et al., 2021). Unlike (Collins et al., 2021), our algorithm satisfies differential privacy, and our results hold for the case of noisy labels. In contrast to prior work on private model personalization (Jain et al., 2021), our utility guarantees hold under a larger class of users’ distributions (sub-Gaussian instead of Gaussian distributions). Additionally, in natural parameter regimes, we improve the privacy error term in (Jain et al., 2021) by a factor of $\widetilde{O}(dk)$. Next, we consider the binary classification setting. We present an information-theoretic construction to privately learn the shared embedding and derive a margin-based accuracy guarantee that is independent of $d$. Our method utilizes the Johnson-Lindenstrauss transform to reduce the effective dimensions of the shared embedding and the users’ data. This result shows that dimension-independent risk bounds are possible in this setting under a margin loss.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-snedeker25a, title = {Private Model Personalization Revisited}, author = {Snedeker, Conor and Zhou, Xinyu and Bassily, Raef}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {56018--56067}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/snedeker25a/snedeker25a.pdf}, url = {https://proceedings.mlr.press/v267/snedeker25a.html}, abstract = {We study model personalization under user-level differential privacy (DP) in the shared representation framework. In this problem, there are $n$ users whose data is statistically heterogeneous, and their optimal parameters share an unknown embedding $U^* \in\mathbb{R}^{d\times k}$ that maps the user parameters in $\mathbb{R}^d$ to low-dimensional representations in $\mathbb{R}^k$, where $k\ll d$. Our goal is to privately recover the shared embedding and the local low-dimensional representations with small excess risk in the federated setting. We propose a private, efficient federated learning algorithm to learn the shared embedding based on the FedRep algorithm in (Collins et al., 2021). Unlike (Collins et al., 2021), our algorithm satisfies differential privacy, and our results hold for the case of noisy labels. In contrast to prior work on private model personalization (Jain et al., 2021), our utility guarantees hold under a larger class of users’ distributions (sub-Gaussian instead of Gaussian distributions). Additionally, in natural parameter regimes, we improve the privacy error term in (Jain et al., 2021) by a factor of $\widetilde{O}(dk)$. Next, we consider the binary classification setting. We present an information-theoretic construction to privately learn the shared embedding and derive a margin-based accuracy guarantee that is independent of $d$. Our method utilizes the Johnson-Lindenstrauss transform to reduce the effective dimensions of the shared embedding and the users’ data. This result shows that dimension-independent risk bounds are possible in this setting under a margin loss.} }
Endnote
%0 Conference Paper %T Private Model Personalization Revisited %A Conor Snedeker %A Xinyu Zhou %A Raef Bassily %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-snedeker25a %I PMLR %P 56018--56067 %U https://proceedings.mlr.press/v267/snedeker25a.html %V 267 %X We study model personalization under user-level differential privacy (DP) in the shared representation framework. In this problem, there are $n$ users whose data is statistically heterogeneous, and their optimal parameters share an unknown embedding $U^* \in\mathbb{R}^{d\times k}$ that maps the user parameters in $\mathbb{R}^d$ to low-dimensional representations in $\mathbb{R}^k$, where $k\ll d$. Our goal is to privately recover the shared embedding and the local low-dimensional representations with small excess risk in the federated setting. We propose a private, efficient federated learning algorithm to learn the shared embedding based on the FedRep algorithm in (Collins et al., 2021). Unlike (Collins et al., 2021), our algorithm satisfies differential privacy, and our results hold for the case of noisy labels. In contrast to prior work on private model personalization (Jain et al., 2021), our utility guarantees hold under a larger class of users’ distributions (sub-Gaussian instead of Gaussian distributions). Additionally, in natural parameter regimes, we improve the privacy error term in (Jain et al., 2021) by a factor of $\widetilde{O}(dk)$. Next, we consider the binary classification setting. We present an information-theoretic construction to privately learn the shared embedding and derive a margin-based accuracy guarantee that is independent of $d$. Our method utilizes the Johnson-Lindenstrauss transform to reduce the effective dimensions of the shared embedding and the users’ data. This result shows that dimension-independent risk bounds are possible in this setting under a margin loss.
APA
Snedeker, C., Zhou, X. & Bassily, R.. (2025). Private Model Personalization Revisited. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:56018-56067 Available from https://proceedings.mlr.press/v267/snedeker25a.html.

Related Material