Online Learning with Unknown Constraints

Karthik Sridharan, Seung Won Wilson Yoo
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:56790-56819, 2025.

Abstract

We consider the problem of online learning where the sequence of actions played by the learner must adhere to an unknown safety constraint at every round. The goal is to minimize regret with respect to the best safe action in hindsight while simultaneously satisfying the safety constraint with high probability on each round. We provide a general meta-algorithm that leverages an online regression oracle to estimate the unknown safety constraint, and converts the predictions of an online learning oracle to predictions that adhere to the unknown safety constraint. On the theoretical side, our algorithm’s regret can be bounded by the regret of the online regression and online learning oracles, the eluder dimension of the model class containing the unknown safety constraint, and a novel complexity measure that characterizes the difficulty of safe learning. We complement our result with an asymptotic lower bound that shows that the aforementioned complexity measure is necessary. When the constraints are linear, we instantiate our result to provide a concrete algorithm with $\sqrt{T}$ regret using a scaling transformation that balances optimistic exploration with pessimistic constraint satisfaction.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-sridharan25a, title = {Online Learning with Unknown Constraints}, author = {Sridharan, Karthik and Yoo, Seung Won Wilson}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {56790--56819}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/sridharan25a/sridharan25a.pdf}, url = {https://proceedings.mlr.press/v267/sridharan25a.html}, abstract = {We consider the problem of online learning where the sequence of actions played by the learner must adhere to an unknown safety constraint at every round. The goal is to minimize regret with respect to the best safe action in hindsight while simultaneously satisfying the safety constraint with high probability on each round. We provide a general meta-algorithm that leverages an online regression oracle to estimate the unknown safety constraint, and converts the predictions of an online learning oracle to predictions that adhere to the unknown safety constraint. On the theoretical side, our algorithm’s regret can be bounded by the regret of the online regression and online learning oracles, the eluder dimension of the model class containing the unknown safety constraint, and a novel complexity measure that characterizes the difficulty of safe learning. We complement our result with an asymptotic lower bound that shows that the aforementioned complexity measure is necessary. When the constraints are linear, we instantiate our result to provide a concrete algorithm with $\sqrt{T}$ regret using a scaling transformation that balances optimistic exploration with pessimistic constraint satisfaction.} }
Endnote
%0 Conference Paper %T Online Learning with Unknown Constraints %A Karthik Sridharan %A Seung Won Wilson Yoo %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-sridharan25a %I PMLR %P 56790--56819 %U https://proceedings.mlr.press/v267/sridharan25a.html %V 267 %X We consider the problem of online learning where the sequence of actions played by the learner must adhere to an unknown safety constraint at every round. The goal is to minimize regret with respect to the best safe action in hindsight while simultaneously satisfying the safety constraint with high probability on each round. We provide a general meta-algorithm that leverages an online regression oracle to estimate the unknown safety constraint, and converts the predictions of an online learning oracle to predictions that adhere to the unknown safety constraint. On the theoretical side, our algorithm’s regret can be bounded by the regret of the online regression and online learning oracles, the eluder dimension of the model class containing the unknown safety constraint, and a novel complexity measure that characterizes the difficulty of safe learning. We complement our result with an asymptotic lower bound that shows that the aforementioned complexity measure is necessary. When the constraints are linear, we instantiate our result to provide a concrete algorithm with $\sqrt{T}$ regret using a scaling transformation that balances optimistic exploration with pessimistic constraint satisfaction.
APA
Sridharan, K. & Yoo, S.W.W.. (2025). Online Learning with Unknown Constraints. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:56790-56819 Available from https://proceedings.mlr.press/v267/sridharan25a.html.

Related Material