[edit]
Parrot: Multilingual Visual Instruction Tuning
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:57984-58007, 2025.
Abstract
The rapid development of Multimodal Large Language Models (MLLMs), such as GPT-4, marks a significant step toward artificial general intelligence. Existing methods typically align vision encoders with LLMs via supervised fine-tuning (SFT), but this often deteriorates their ability to handle multiple languages as training progresses. We empirically observe that imbalanced SFT datasets, largely English-centric, degrade performance on non-English languages due to the failure in multilingual token alignment. To address this, we propose Parrot, a novel approach that leverages textual guidance for visual token alignment at the language level. Parrot conditions visual tokens on diverse language inputs and uses Mixture-of-Experts (MoE) to align multilingual tokens. By computing cross-attention between initial visual features and textual embeddings, we select the most relevant experts, converting visual tokens into language-specific representations. Additionally, we introduce the Massive Multilingual Multimodal Benchmark (MMMB), a new benchmark comprising 6 languages, 15 categories, and 12,000 questions, to assess multilingual capabilities. Parrot achieves state-of-the-art performance on both the multilingual benchmarks and a wide range of multimodal tasks. Code and dataset are available at: https://github.com/AIDC-AI/Parrot.