LOGO — Long cOntext aliGnment via efficient preference Optimization

Zecheng Tang, Zechen Sun, Juntao Li, Qiaoming Zhu, Min Zhang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:58944-58968, 2025.

Abstract

Long-context models (LCMs) have shown great potential in processing long input sequences (even more than 100M tokens) conveniently and effectively. With significant progress, recent research has pointed out that LCMs can accurately locate token-level salient information within the context. Yet, the generation performance of these LCMs is far from satisfactory and might result in misaligned responses, such as hallucinations. To enhance the generation capability of LCMs, existing works have investigated the effects of data size and quality for both pre-training and instruction tuning. Though achieving meaningful improvement, previous methods fall short in either effectiveness or efficiency. In this paper, we introduce LOGO (Long cOntext aliGnment via efficient preference Optimization), a training strategy that first introduces preference optimization for long-context alignment. To overcome the GPU memory-bound issue caused by the long sequence, LOGO employs a reference-free preference optimization strategy and adopts a position synthesis method to construct the training data. By training with only 0.3B data on a single 8 x A800 GPU machine for 16 hours, LOGO allows the Llama-3-8B-Instruct-80K model to achieve comparable performance with GPT-4 in real-world long-context tasks while preserving the model’s original capabilities on other tasks, e.g., language modeling and MMLU. Moreover, LOGO can extend the model’s context window size while enhancing its generation performance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-tang25j, title = {{LOGO} — Long c{O}ntext ali{G}nment via efficient preference Optimization}, author = {Tang, Zecheng and Sun, Zechen and Li, Juntao and Zhu, Qiaoming and Zhang, Min}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {58944--58968}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/tang25j/tang25j.pdf}, url = {https://proceedings.mlr.press/v267/tang25j.html}, abstract = {Long-context models (LCMs) have shown great potential in processing long input sequences (even more than 100M tokens) conveniently and effectively. With significant progress, recent research has pointed out that LCMs can accurately locate token-level salient information within the context. Yet, the generation performance of these LCMs is far from satisfactory and might result in misaligned responses, such as hallucinations. To enhance the generation capability of LCMs, existing works have investigated the effects of data size and quality for both pre-training and instruction tuning. Though achieving meaningful improvement, previous methods fall short in either effectiveness or efficiency. In this paper, we introduce LOGO (Long cOntext aliGnment via efficient preference Optimization), a training strategy that first introduces preference optimization for long-context alignment. To overcome the GPU memory-bound issue caused by the long sequence, LOGO employs a reference-free preference optimization strategy and adopts a position synthesis method to construct the training data. By training with only 0.3B data on a single 8 x A800 GPU machine for 16 hours, LOGO allows the Llama-3-8B-Instruct-80K model to achieve comparable performance with GPT-4 in real-world long-context tasks while preserving the model’s original capabilities on other tasks, e.g., language modeling and MMLU. Moreover, LOGO can extend the model’s context window size while enhancing its generation performance.} }
Endnote
%0 Conference Paper %T LOGO — Long cOntext aliGnment via efficient preference Optimization %A Zecheng Tang %A Zechen Sun %A Juntao Li %A Qiaoming Zhu %A Min Zhang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-tang25j %I PMLR %P 58944--58968 %U https://proceedings.mlr.press/v267/tang25j.html %V 267 %X Long-context models (LCMs) have shown great potential in processing long input sequences (even more than 100M tokens) conveniently and effectively. With significant progress, recent research has pointed out that LCMs can accurately locate token-level salient information within the context. Yet, the generation performance of these LCMs is far from satisfactory and might result in misaligned responses, such as hallucinations. To enhance the generation capability of LCMs, existing works have investigated the effects of data size and quality for both pre-training and instruction tuning. Though achieving meaningful improvement, previous methods fall short in either effectiveness or efficiency. In this paper, we introduce LOGO (Long cOntext aliGnment via efficient preference Optimization), a training strategy that first introduces preference optimization for long-context alignment. To overcome the GPU memory-bound issue caused by the long sequence, LOGO employs a reference-free preference optimization strategy and adopts a position synthesis method to construct the training data. By training with only 0.3B data on a single 8 x A800 GPU machine for 16 hours, LOGO allows the Llama-3-8B-Instruct-80K model to achieve comparable performance with GPT-4 in real-world long-context tasks while preserving the model’s original capabilities on other tasks, e.g., language modeling and MMLU. Moreover, LOGO can extend the model’s context window size while enhancing its generation performance.
APA
Tang, Z., Sun, Z., Li, J., Zhu, Q. & Zhang, M.. (2025). LOGO — Long cOntext aliGnment via efficient preference Optimization. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:58944-58968 Available from https://proceedings.mlr.press/v267/tang25j.html.

Related Material