A Physics-Informed Machine Learning Framework for Safe and Optimal Control of Autonomous Systems

Manan Tayal, Aditya Singh, Shishir Kolathaya, Somil Bansal
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:59237-59258, 2025.

Abstract

As autonomous systems become more ubiquitous in daily life, ensuring high performance with guaranteed safety is crucial. However, safety and performance could be competing objectives, which makes their co-optimization difficult. Learning-based methods, such as Constrained Reinforcement Learning (CRL), achieve strong performance but lack formal safety guarantees due to safety being enforced as soft constraints, limiting their use in safety-critical settings. Conversely, formal methods such as Hamilton-Jacobi (HJ) Reachability Analysis and Control Barrier Functions (CBFs) provide rigorous safety assurances but often neglect performance, resulting in overly conservative controllers. To bridge this gap, we formulate the co-optimization of safety and performance as a state-constrained optimal control problem, where performance objectives are encoded via a cost function and safety requirements are imposed as state constraints. We demonstrate that the resultant value function satisfies a Hamilton-Jacobi-Bellman (HJB) equation, which we approximate efficiently using a novel physics-informed machine learning framework. In addition, we introduce a conformal prediction-based verification strategy to quantify the learning errors, recovering a high-confidence safety value function, along with a probabilistic error bound on performance degradation. Through several case studies, we demonstrate the efficacy of the proposed framework in enabling scalable learning of safe and performant controllers for complex, high-dimensional autonomous systems.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-tayal25a, title = {A Physics-Informed Machine Learning Framework for Safe and Optimal Control of Autonomous Systems}, author = {Tayal, Manan and Singh, Aditya and Kolathaya, Shishir and Bansal, Somil}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {59237--59258}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/tayal25a/tayal25a.pdf}, url = {https://proceedings.mlr.press/v267/tayal25a.html}, abstract = {As autonomous systems become more ubiquitous in daily life, ensuring high performance with guaranteed safety is crucial. However, safety and performance could be competing objectives, which makes their co-optimization difficult. Learning-based methods, such as Constrained Reinforcement Learning (CRL), achieve strong performance but lack formal safety guarantees due to safety being enforced as soft constraints, limiting their use in safety-critical settings. Conversely, formal methods such as Hamilton-Jacobi (HJ) Reachability Analysis and Control Barrier Functions (CBFs) provide rigorous safety assurances but often neglect performance, resulting in overly conservative controllers. To bridge this gap, we formulate the co-optimization of safety and performance as a state-constrained optimal control problem, where performance objectives are encoded via a cost function and safety requirements are imposed as state constraints. We demonstrate that the resultant value function satisfies a Hamilton-Jacobi-Bellman (HJB) equation, which we approximate efficiently using a novel physics-informed machine learning framework. In addition, we introduce a conformal prediction-based verification strategy to quantify the learning errors, recovering a high-confidence safety value function, along with a probabilistic error bound on performance degradation. Through several case studies, we demonstrate the efficacy of the proposed framework in enabling scalable learning of safe and performant controllers for complex, high-dimensional autonomous systems.} }
Endnote
%0 Conference Paper %T A Physics-Informed Machine Learning Framework for Safe and Optimal Control of Autonomous Systems %A Manan Tayal %A Aditya Singh %A Shishir Kolathaya %A Somil Bansal %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-tayal25a %I PMLR %P 59237--59258 %U https://proceedings.mlr.press/v267/tayal25a.html %V 267 %X As autonomous systems become more ubiquitous in daily life, ensuring high performance with guaranteed safety is crucial. However, safety and performance could be competing objectives, which makes their co-optimization difficult. Learning-based methods, such as Constrained Reinforcement Learning (CRL), achieve strong performance but lack formal safety guarantees due to safety being enforced as soft constraints, limiting their use in safety-critical settings. Conversely, formal methods such as Hamilton-Jacobi (HJ) Reachability Analysis and Control Barrier Functions (CBFs) provide rigorous safety assurances but often neglect performance, resulting in overly conservative controllers. To bridge this gap, we formulate the co-optimization of safety and performance as a state-constrained optimal control problem, where performance objectives are encoded via a cost function and safety requirements are imposed as state constraints. We demonstrate that the resultant value function satisfies a Hamilton-Jacobi-Bellman (HJB) equation, which we approximate efficiently using a novel physics-informed machine learning framework. In addition, we introduce a conformal prediction-based verification strategy to quantify the learning errors, recovering a high-confidence safety value function, along with a probabilistic error bound on performance degradation. Through several case studies, we demonstrate the efficacy of the proposed framework in enabling scalable learning of safe and performant controllers for complex, high-dimensional autonomous systems.
APA
Tayal, M., Singh, A., Kolathaya, S. & Bansal, S.. (2025). A Physics-Informed Machine Learning Framework for Safe and Optimal Control of Autonomous Systems. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:59237-59258 Available from https://proceedings.mlr.press/v267/tayal25a.html.

Related Material