[edit]
DyPolySeg: Taylor Series-Inspired Dynamic Polynomial Fitting Network for Few-shot Point Cloud Semantic Segmentation
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:62845-62856, 2025.
Abstract
Few-shot point cloud semantic segmentation effectively addresses data scarcity by identifying unlabeled query samples through semantic prototypes generated from a small set of labeled support samples. However, pre-training-based methods suffer from domain shifts and increased training time. Additionally, existing methods using DGCNN as the backbone have limited geometric structure modeling capabilities and struggle to bridge the categorical information gap between query and support sets. To address these challenges, we propose DyPolySeg, a pre-training-free Dynamic Polynomial fitting network for few-shot point cloud semantic segmentation. Specifically, we design a unified Dynamic Polynomial Convolution (DyPolyConv) that extracts flat and detailed features of local geometry through Low-order Convolution (LoConv) and Dynamic High-order Convolution (DyHoConv), complemented by Mamba Block for capturing global context information. Furthermore, we propose a lightweight Prototype Completion Module (PCM) that reduces structural differences through self-enhancement and interactive enhancement between query and support sets. Experiments demonstrate that DyPolySeg achieves state-of-the-art performance on S3DIS and ScanNet datasets.