Discovering Latent Causal Graphs from Spatiotemporal Data

Kun Wang, Sumanth Varambally, Duncan Watson-Parris, Yian Ma, Rose Yu
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:64549-64585, 2025.

Abstract

Many important phenomena in scientific fields like climate, neuroscience, and epidemiology are naturally represented as spatiotemporal gridded data with complex interactions. Inferring causal relationships from these data is a challenging problem compounded by the high dimensionality of such data and the correlations between spatially proximate points. We present SPACY (SPAtiotemporal Causal discoverY), a novel framework based on variational inference, designed to model latent time series and their causal relationships from spatiotemporal data. SPACY alleviates the high-dimensional challenge by discovering causal structures in the latent space. To aggregate spatially proximate, correlated grid points, we use spatial factors, parametrized by spatial kernel functions, to map observational time series to latent representations. Theoretically, we generalize the problem to a continuous spatial domain and establish identifiability when the observations arise from a nonlinear, invertible function of the product of latent series and spatial factors. Using this approach, we avoid assumptions that are often unverifiable, including those about instantaneous effects or sufficient variability. Empirically, SPACY outperforms state-of-the-art baselines on synthetic data, even in challenging settings where existing methods struggle, while remaining scalable for large grids. SPACY also identifies key known phenomena from real-world climate data. An implementation of SPACY is available at https://github.com/Rose-STL-Lab/SPACY/

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wang25cy, title = {Discovering Latent Causal Graphs from Spatiotemporal Data}, author = {Wang, Kun and Varambally, Sumanth and Watson-Parris, Duncan and Ma, Yian and Yu, Rose}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {64549--64585}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wang25cy/wang25cy.pdf}, url = {https://proceedings.mlr.press/v267/wang25cy.html}, abstract = {Many important phenomena in scientific fields like climate, neuroscience, and epidemiology are naturally represented as spatiotemporal gridded data with complex interactions. Inferring causal relationships from these data is a challenging problem compounded by the high dimensionality of such data and the correlations between spatially proximate points. We present SPACY (SPAtiotemporal Causal discoverY), a novel framework based on variational inference, designed to model latent time series and their causal relationships from spatiotemporal data. SPACY alleviates the high-dimensional challenge by discovering causal structures in the latent space. To aggregate spatially proximate, correlated grid points, we use spatial factors, parametrized by spatial kernel functions, to map observational time series to latent representations. Theoretically, we generalize the problem to a continuous spatial domain and establish identifiability when the observations arise from a nonlinear, invertible function of the product of latent series and spatial factors. Using this approach, we avoid assumptions that are often unverifiable, including those about instantaneous effects or sufficient variability. Empirically, SPACY outperforms state-of-the-art baselines on synthetic data, even in challenging settings where existing methods struggle, while remaining scalable for large grids. SPACY also identifies key known phenomena from real-world climate data. An implementation of SPACY is available at https://github.com/Rose-STL-Lab/SPACY/} }
Endnote
%0 Conference Paper %T Discovering Latent Causal Graphs from Spatiotemporal Data %A Kun Wang %A Sumanth Varambally %A Duncan Watson-Parris %A Yian Ma %A Rose Yu %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wang25cy %I PMLR %P 64549--64585 %U https://proceedings.mlr.press/v267/wang25cy.html %V 267 %X Many important phenomena in scientific fields like climate, neuroscience, and epidemiology are naturally represented as spatiotemporal gridded data with complex interactions. Inferring causal relationships from these data is a challenging problem compounded by the high dimensionality of such data and the correlations between spatially proximate points. We present SPACY (SPAtiotemporal Causal discoverY), a novel framework based on variational inference, designed to model latent time series and their causal relationships from spatiotemporal data. SPACY alleviates the high-dimensional challenge by discovering causal structures in the latent space. To aggregate spatially proximate, correlated grid points, we use spatial factors, parametrized by spatial kernel functions, to map observational time series to latent representations. Theoretically, we generalize the problem to a continuous spatial domain and establish identifiability when the observations arise from a nonlinear, invertible function of the product of latent series and spatial factors. Using this approach, we avoid assumptions that are often unverifiable, including those about instantaneous effects or sufficient variability. Empirically, SPACY outperforms state-of-the-art baselines on synthetic data, even in challenging settings where existing methods struggle, while remaining scalable for large grids. SPACY also identifies key known phenomena from real-world climate data. An implementation of SPACY is available at https://github.com/Rose-STL-Lab/SPACY/
APA
Wang, K., Varambally, S., Watson-Parris, D., Ma, Y. & Yu, R.. (2025). Discovering Latent Causal Graphs from Spatiotemporal Data. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:64549-64585 Available from https://proceedings.mlr.press/v267/wang25cy.html.

Related Material