AutoAL: Automated Active Learning with Differentiable Query Strategy Search

Yifeng Wang, Xueying Zhan, Siyu Huang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:65400-65411, 2025.

Abstract

As deep learning continues to evolve, the need for data efficiency becomes increasingly important. Considering labeling large datasets is both time-consuming and expensive, active learning (AL) provides a promising solution to this challenge by iteratively selecting the most informative subsets of examples to train deep neural networks, thereby reducing the labeling cost. However, the effectiveness of different AL algorithms can vary significantly across data scenarios, and determining which AL algorithm best fits a given task remains a challenging problem. This work presents the first differentiable AL strategy search method, named AutoAL, which is designed on top of existing AL sampling strategies. AutoAL consists of two neural nets, named SearchNet and FitNet, which are optimized concurrently under a differentiable bi-level optimization framework. For any given task, SearchNet and FitNet are iteratively co-optimized using the labeled data, learning how well a set of candidate AL algorithms perform on that task. With the optimal AL strategies identified, SearchNet selects a small subset from the unlabeled pool for querying their annotations, enabling efficient training of the task model. Experimental results demonstrate that AutoAL consistently achieves superior accuracy compared to all candidate AL algorithms and other selective AL approaches, showcasing its potential for adapting and integrating multiple existing AL methods across diverse tasks and domains.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wang25ej, title = {{A}uto{AL}: Automated Active Learning with Differentiable Query Strategy Search}, author = {Wang, Yifeng and Zhan, Xueying and Huang, Siyu}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {65400--65411}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wang25ej/wang25ej.pdf}, url = {https://proceedings.mlr.press/v267/wang25ej.html}, abstract = {As deep learning continues to evolve, the need for data efficiency becomes increasingly important. Considering labeling large datasets is both time-consuming and expensive, active learning (AL) provides a promising solution to this challenge by iteratively selecting the most informative subsets of examples to train deep neural networks, thereby reducing the labeling cost. However, the effectiveness of different AL algorithms can vary significantly across data scenarios, and determining which AL algorithm best fits a given task remains a challenging problem. This work presents the first differentiable AL strategy search method, named AutoAL, which is designed on top of existing AL sampling strategies. AutoAL consists of two neural nets, named SearchNet and FitNet, which are optimized concurrently under a differentiable bi-level optimization framework. For any given task, SearchNet and FitNet are iteratively co-optimized using the labeled data, learning how well a set of candidate AL algorithms perform on that task. With the optimal AL strategies identified, SearchNet selects a small subset from the unlabeled pool for querying their annotations, enabling efficient training of the task model. Experimental results demonstrate that AutoAL consistently achieves superior accuracy compared to all candidate AL algorithms and other selective AL approaches, showcasing its potential for adapting and integrating multiple existing AL methods across diverse tasks and domains.} }
Endnote
%0 Conference Paper %T AutoAL: Automated Active Learning with Differentiable Query Strategy Search %A Yifeng Wang %A Xueying Zhan %A Siyu Huang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wang25ej %I PMLR %P 65400--65411 %U https://proceedings.mlr.press/v267/wang25ej.html %V 267 %X As deep learning continues to evolve, the need for data efficiency becomes increasingly important. Considering labeling large datasets is both time-consuming and expensive, active learning (AL) provides a promising solution to this challenge by iteratively selecting the most informative subsets of examples to train deep neural networks, thereby reducing the labeling cost. However, the effectiveness of different AL algorithms can vary significantly across data scenarios, and determining which AL algorithm best fits a given task remains a challenging problem. This work presents the first differentiable AL strategy search method, named AutoAL, which is designed on top of existing AL sampling strategies. AutoAL consists of two neural nets, named SearchNet and FitNet, which are optimized concurrently under a differentiable bi-level optimization framework. For any given task, SearchNet and FitNet are iteratively co-optimized using the labeled data, learning how well a set of candidate AL algorithms perform on that task. With the optimal AL strategies identified, SearchNet selects a small subset from the unlabeled pool for querying their annotations, enabling efficient training of the task model. Experimental results demonstrate that AutoAL consistently achieves superior accuracy compared to all candidate AL algorithms and other selective AL approaches, showcasing its potential for adapting and integrating multiple existing AL methods across diverse tasks and domains.
APA
Wang, Y., Zhan, X. & Huang, S.. (2025). AutoAL: Automated Active Learning with Differentiable Query Strategy Search. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:65400-65411 Available from https://proceedings.mlr.press/v267/wang25ej.html.

Related Material