TtBA: Two-third Bridge Approach for Decision-Based Adversarial Attack

Feiyang Wang, Xingquan Zuo, Hai Huang, Gang Chen
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:65918-65935, 2025.

Abstract

A key challenge in black-box adversarial attacks is the high query complexity in hard-label settings, where only the top-1 predicted label from the target deep model is accessible. In this paper, we propose a novel normal-vector-based method called Two-third Bridge Attack (TtBA). A innovative bridge direction is introduced which is a weighted combination of the current unit perturbation direction and its unit normal vector, controlled by a weight parameter $k$. We further use binary search to identify $k=k_\text{bridge}$, which has identical decision boundary as the current direction. Notably, we observe that $k=2/3 k_\text{bridge}$ yields a near-optimal perturbation direction, ensuring the stealthiness of the attack. In addition, we investigate the critical importance of local optima during the perturbation direction optimization process and propose a simple and effective approach to detect and escape such local optima. Experimental results on MNIST, FASHION-MNIST, CIFAR10, CIFAR100, and ImageNet datasets demonstrate the strong performance and scalability of our approach. Compared to state-of-the-art non-targeted and targeted attack methods, TtBA consistently delivers superior performance across most experimented datasets and deep learning models. Code is available at https://anonymous.4open.science/r/TtBA-6ECF.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wang25fg, title = {{T}t{BA}: Two-third Bridge Approach for Decision-Based Adversarial Attack}, author = {Wang, Feiyang and Zuo, Xingquan and Huang, Hai and Chen, Gang}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {65918--65935}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wang25fg/wang25fg.pdf}, url = {https://proceedings.mlr.press/v267/wang25fg.html}, abstract = {A key challenge in black-box adversarial attacks is the high query complexity in hard-label settings, where only the top-1 predicted label from the target deep model is accessible. In this paper, we propose a novel normal-vector-based method called Two-third Bridge Attack (TtBA). A innovative bridge direction is introduced which is a weighted combination of the current unit perturbation direction and its unit normal vector, controlled by a weight parameter $k$. We further use binary search to identify $k=k_\text{bridge}$, which has identical decision boundary as the current direction. Notably, we observe that $k=2/3 k_\text{bridge}$ yields a near-optimal perturbation direction, ensuring the stealthiness of the attack. In addition, we investigate the critical importance of local optima during the perturbation direction optimization process and propose a simple and effective approach to detect and escape such local optima. Experimental results on MNIST, FASHION-MNIST, CIFAR10, CIFAR100, and ImageNet datasets demonstrate the strong performance and scalability of our approach. Compared to state-of-the-art non-targeted and targeted attack methods, TtBA consistently delivers superior performance across most experimented datasets and deep learning models. Code is available at https://anonymous.4open.science/r/TtBA-6ECF.} }
Endnote
%0 Conference Paper %T TtBA: Two-third Bridge Approach for Decision-Based Adversarial Attack %A Feiyang Wang %A Xingquan Zuo %A Hai Huang %A Gang Chen %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wang25fg %I PMLR %P 65918--65935 %U https://proceedings.mlr.press/v267/wang25fg.html %V 267 %X A key challenge in black-box adversarial attacks is the high query complexity in hard-label settings, where only the top-1 predicted label from the target deep model is accessible. In this paper, we propose a novel normal-vector-based method called Two-third Bridge Attack (TtBA). A innovative bridge direction is introduced which is a weighted combination of the current unit perturbation direction and its unit normal vector, controlled by a weight parameter $k$. We further use binary search to identify $k=k_\text{bridge}$, which has identical decision boundary as the current direction. Notably, we observe that $k=2/3 k_\text{bridge}$ yields a near-optimal perturbation direction, ensuring the stealthiness of the attack. In addition, we investigate the critical importance of local optima during the perturbation direction optimization process and propose a simple and effective approach to detect and escape such local optima. Experimental results on MNIST, FASHION-MNIST, CIFAR10, CIFAR100, and ImageNet datasets demonstrate the strong performance and scalability of our approach. Compared to state-of-the-art non-targeted and targeted attack methods, TtBA consistently delivers superior performance across most experimented datasets and deep learning models. Code is available at https://anonymous.4open.science/r/TtBA-6ECF.
APA
Wang, F., Zuo, X., Huang, H. & Chen, G.. (2025). TtBA: Two-third Bridge Approach for Decision-Based Adversarial Attack. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:65918-65935 Available from https://proceedings.mlr.press/v267/wang25fg.html.

Related Material