FrameBridge: Improving Image-to-Video Generation with Bridge Models

Yuji Wang, Zehua Chen, Chen Xiaoyu, Yixiang Wei, Jun Zhu, Jianfei Chen
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:62596-62626, 2025.

Abstract

Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-wang25q, title = {{F}rame{B}ridge: Improving Image-to-Video Generation with Bridge Models}, author = {Wang, Yuji and Chen, Zehua and Xiaoyu, Chen and Wei, Yixiang and Zhu, Jun and Chen, Jianfei}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {62596--62626}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/wang25q/wang25q.pdf}, url = {https://proceedings.mlr.press/v267/wang25q.html}, abstract = {Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/} }
Endnote
%0 Conference Paper %T FrameBridge: Improving Image-to-Video Generation with Bridge Models %A Yuji Wang %A Zehua Chen %A Chen Xiaoyu %A Yixiang Wei %A Jun Zhu %A Jianfei Chen %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-wang25q %I PMLR %P 62596--62626 %U https://proceedings.mlr.press/v267/wang25q.html %V 267 %X Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/
APA
Wang, Y., Chen, Z., Xiaoyu, C., Wei, Y., Zhu, J. & Chen, J.. (2025). FrameBridge: Improving Image-to-Video Generation with Bridge Models. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:62596-62626 Available from https://proceedings.mlr.press/v267/wang25q.html.

Related Material